×

zbMATH — the first resource for mathematics

SUPG/PSPG computational analysis of rain erosion in wind-turbine blades. (English) Zbl 1356.76160
Bazilevs, Yuri (ed.) et al., Advances in computational fluid-structure interaction and flow simulation. New methods and challenging computations. Based on the presentations at the conference, AFSI, Tokyo, Japan, March 19–21, 2014. Basel: Birkhäuser/Springer (ISBN 978-3-319-40825-5/hbk; 978-3-319-40827-9/ebook). Modeling and Simulation in Science, Engineering and Technology, 77-96 (2016).
Summary: Wind-turbine blades exposed to rain can be damaged by erosion if not protected. Although this damage does not typically influence the structural response of the blades, it could heavily degrade the aerodynamic performance, and therefore the power production. We present a method for computational analysis of rain erosion in wind-turbine blades. The method is based on a stabilized finite element fluid mechanics formulation and a finite element particle-cloud tracking method. Accurate representation of the flow would be essential in reliable computational turbomachinery analysis and design. The turbulent-flow nature of the problem is dealt with a RANS model and SUPG/PSPG stabilization, the particle-cloud trajectories are calculated based on the flow field and closure models for the turbulence-particle interaction, and one-way dependence is assumed between the flow field and particle dynamics. The erosion patterns are then computed based on the particle-cloud data.
For the entire collection see [Zbl 1356.76009].

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
76D05 Navier-Stokes equations for incompressible viscous fluids
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
Software:
SUPG
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Powell, S.: 3M wind blade protection coating. Industrial Marketing Presentation W4600, 3M (2011)
[2] 3M: A 3M study is the first to show the effects of erosion on wind turbine efficiency. [Online] www.pressebox.com/pressrelease/3m-deutschland-gmbh/A-3M-Study-Is-the-First-to-Show-the-Effects-of-Erosion-on-Wind-Turbine-Efficiency/boxid/445007 (2011)
[3] Wood, K.: Blade repair: closing the maintenance gap. Technical Report, Composites Technology (2011)
[4] Tabakoff, W., Kotwal, R., Hamed, A.: Erosion study of different materials affected by coal ash particles. Wear 52, 161–173 (1979) · doi:10.1016/0043-1648(79)90206-0
[5] Keegan, M.H., Nash, D.H., Stack, M.M.: On erosion issues associated with the leading edge of wind turbine blades. J. Phys. D Appl. Phys. 46, 383001 (2013) · doi:10.1088/0022-3727/46/38/383001
[6] Grant, G., Tabakoff, W.: Erosion prediction in turbomachinery resulting from environmental solid particles. J. Aircr. 12, 471–478 (1975) · doi:10.2514/3.59826
[7] Hussein, M.F., Tabakoff, W.: Computation and plotting of solid particle flow in rotating cascades. Comput. Fluids 2, 1–15 (1974) · Zbl 0329.76085 · doi:10.1016/0045-7930(74)90002-4
[8] Elfeki, S., Tabakoff, W.: Erosion study of radial flow compressor with splitters. J. Turbomach. 109, 62–69 (1987) · doi:10.1115/1.3262071
[9] Ghenaiet, A., Tan, S.C., Elder, R.L.: Experimental investigation of axial fan erosion and performance degradation. Proc. Inst. Mech. Eng. Part A J. Power Energy 218, 437–446 (1987) · doi:10.1243/0957650041761900
[10] Ghenaiet, A.: Numerical simulations of flow and particle dynamics within a centrifugal turbomachine. Compressors and Their Systems, vol. 218 (2005). IMechE Paper No. C639-52
[11] Corsini, A., Rispoli, F., Sheard, A.G., Takizawa, K., Tezduyar, T.E., Venturini, P.: A variational multiscale method for particle-cloud tracking in turbomachinery flows. Comput. Mech., 54, 1191–1202 (2014). doi: 10.1007/s00466-014-1050-0 · Zbl 1311.76030 · doi:10.1007/s00466-014-1050-0
[12] Haag, M.: Advances in leading edge protection of wind turbine blades. EWEA Annual Wind Energy Event, Vienna (2013)
[13] Weigel, W.: Advanced rotor blade erosion protection system. Technical Report, Kaman Aerospace Corporation (1996)
[14] TGM-Services: Blade erosion, 2011 [Online]. Available: http://tgmwind.com/bladeerosion.html# bladeerosion
[15] Henkel: Blade maintenance, 2013 [Online]. Available: http://www.henkelna.com/industrial/blade-maintenance-19836.htm
[16] Broadwind-Energy: Blade services, 2012 [Online]. Available: http://www.bwen.com/WindTurbineBladeServices_7777.aspx
[17] Ropeworks: Blade repair and maintenance services, 2011 [Online]. Available: http://www.ropeworks.com/service_wind_blade.htm
[18] Gohardani, O.: Impact of erosion testing aspects on current and future flight conditions. Prog. Aerosp. Sci. 47, 280–303 (2011) · doi:10.1016/j.paerosci.2011.04.001
[19] University of Dayton Research Institute: Rain erosion test facility, 2013 [Online] Available: http://www.udri.udayton.edu/NONSTRUCTURALMATERIALS/COATINGS/Pages/RainErosionTestFacility.aspx
[20] Corsini, A., Castorrini, A., Morei, E., Rispoli, F., Sciulli, F., Venturini, P.: Modeling of rain drop erosion in a multi-MW wind turbine. ASME Turbo Expo, Montreal (2015) · doi:10.1115/GT2015-42174
[21] Baxter, L.L., Smith, P.J.: Turbulent dispersion of particles: the STP model. Energy Fuels 7, 852–859 (1993) · doi:10.1021/ef00042a022
[22] Venturini, P.: Modelling of particle-wall deposition in two-phase gas-solid flows. Ph.D. thesis, Sapienza University of Rome (2010)
[23] Cardillo, L., Corsini, A., Delibra, G., Rispoli, F., Sheard, A.G., Venturini, P.: Simulation of particle-laden flows in a large centrifugal fan for erosion prediction. In: 58th American Society of Mechanical Engineers Turbine and Aeroengine Congress, Düsseldorf (2015)
[24] Kaer, S.K.: Numerical investigation of ash deposition in straw-fired furnaces. Ph.D. thesis, Aalborg University (2001)
[25] Corsini, A., Marchegiani, A., Rispoli, F., Venturini, P.: Predicting blade leading edge erosion in an axial induced draft fan. ASME J. Eng. Gas Turbines Power, 134, 042601 (1993) · doi:10.1115/1.4004724
[26] Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[27] Tezduyar, T.E.: Stabilized finite element formulations for incompressible flow computations. Adv. Appl. Mech. 28, 1–44 (1992). doi: 10.1016/S0065-2156(08)70153-4 · Zbl 0747.76069 · doi:10.1016/S0065-2156(08)70153-4
[28] Tezduyar, T.E., Mittal, S., Ray, S.E., Shih, R.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 95, 221–242 (1992). doi: 10.1016/0045-7825(92)90141-6 · Zbl 0756.76048 · doi:10.1016/0045-7825(92)90141-6
[29] Tezduyar, T.E., Park, Y.J.: Discontinuity capturing finite element formulations for nonlinear convection-diffusion-reaction equations. Comput. Methods Appl. Mech. Eng. 59, 307–325 (1986). doi: 10.1016/0045-7825(86)90003-4 · Zbl 0593.76096 · doi:10.1016/0045-7825(86)90003-4
[30] Corsini, A., Rispoli, F., Santoriello, A., Tezduyar, T.E.: Improved discontinuity-capturing finite element techniques for reaction effects in turbulence computation. Comput. Mech. 38, 356–364 (2006). doi:10.1007/s00466-006-0045-x · Zbl 1177.76192 · doi:10.1007/s00466-006-0045-x
[31] Corsini, A., Menichini, C., Rispoli, F., Santoriello, A., Tezduyar, T.E.: A multiscale finite element formulation with discontinuity capturing for turbulence models with dominant reaction like terms. J. Appl. Mech. 76, 021211 (2009). doi:10.1115/1.3062967 · doi:10.1115/1.3062967
[32] Corsini, A., Iossa, C., Rispoli, F., Tezduyar, T.E.: A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors. Comput. Mech. 46, 159–167 (2010). doi:10.1007/s00466-009-0441-0 · Zbl 1301.76045 · doi:10.1007/s00466-009-0441-0
[33] Corsini, A., Rispoli, F., Tezduyar, T.E.: Stabilized finite element computation of NOx emission in aero-engine combustors. Int. J. Numer. Methods Fluids 65, 254–270 (2011). doi:10.1002/fld.2451 · Zbl 1426.76240 · doi:10.1002/fld.2451
[34] Tezduyar, T.E., Park, Y.J., Deans, H.A.: Finite element procedures for time-dependent convection-diffusion-reaction systems. Int. J. Numer. Methods Fluids 7, 1013–1033 (1987). doi:10.1002/fld.1650071003 · Zbl 0634.76088 · doi:10.1002/fld.1650071003
[35] Hughes, T.J.R., Tezduyar, T.E.: Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput. Methods Appl. Mech. Eng. 45, 217–284 (1984). doi:10.1016/0045-7825(84)90157-9 · Zbl 0542.76093 · doi:10.1016/0045-7825(84)90157-9
[36] Le Beau, G.J., Ray, S.E., Aliabadi, S.K., Tezduyar, T.E.: SUPG finite element computation of compressible flows with the entropy and conservation variables formulations. Comput. Methods Appl. Mech. Eng. 104, 397–422 (1993). doi:10.1016/0045-7825(93)90033-T · Zbl 0772.76037 · doi:10.1016/0045-7825(93)90033-T
[37] Tezduyar, T.E., Osawa, Y.: Finite element stabilization parameters computed from element matrices and vectors. Comput. Methods Appl. Mech. Eng. 190, 411–430 (2000) doi:10.1016/S0045-7825(00)00211-5 · Zbl 0973.76057 · doi:10.1016/S0045-7825(00)00211-5
[38] Akin, J.E., Tezduyar, T., Ungor, M., Mittal, S.: Stabilization parameters and Smagorinsky turbulence model. J. Appl. Mech. 70, 2–9 (2003). doi:10.1115/1.1526569 · Zbl 1110.74311 · doi:10.1115/1.1526569
[39] Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43, 555–575 (2003). doi:10.1002/fld.505 · Zbl 1032.76605 · doi:10.1002/fld.505
[40] Akin, J.E., Tezduyar, T.E.: Calculation of the advective limit of the SUPG stabilization parameter for linear and higher-order elements. Comput. Methods Appl. Mech. Eng. 193, 1909–1922 (2004). doi:10.1016/j.cma.2003.12.050 · Zbl 1067.76557 · doi:10.1016/j.cma.2003.12.050
[41] Tezduyar, T.E., Senga, M.: Stabilization and shock-capturing parameters in SUPG formulation of compressible flows. Comput. Methods Appl. Mech. Eng. 195, 1621–1632 (2006). doi:10.1016/j.cma.2005.05.032 · Zbl 1122.76061 · doi:10.1016/j.cma.2005.05.032
[42] Tezduyar, T.E.: Finite elements in fluids: stabilized formulations and moving boundaries and interfaces. Comput. Fluids 36, 191–206 (2007). doi:10.1016/j.compfluid.2005.02.011 · Zbl 1177.76202 · doi:10.1016/j.compfluid.2005.02.011
[43] Tezduyar, T.E., Senga, M.: SUPG finite element computation of inviscid supersonic flows with YZ\(\beta\) shock-capturing. Comput. Fluids 36, 147–159 (2007). doi:10.1016/j.compfluid.2005.07.009 · Zbl 1127.76029 · doi:10.1016/j.compfluid.2005.07.009
[44] Tezduyar, T.E., Senga, M., Vicker, D.: Computation of inviscid supersonic flows around cylinders and spheres with the SUPG formulation and YZ\(\beta\) shock-capturing. Comput. Mech. 38, 469–481 (2006). doi:10.1007/s00466-005-0025-6 · Zbl 1176.76077 · doi:10.1007/s00466-005-0025-6
[45] Rispoli, F., Corsini, A., Tezduyar, T.E.: Finite element computation of turbulent flows with the discontinuity-capturing directional dissipation (DCDD). Comput. Fluids 36, 121–126 (2007). doi:10.1016/j.compfluid.2005.07.004 · Zbl 1181.76098 · doi:10.1016/j.compfluid.2005.07.004
[46] Bazilevs, Y., Calo, V.M., Tezduyar, T.E., Hughes, T.J.R.: YZ\(\beta\) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery. Int. J. Numer. Methods Fluids 54, 593–608 (2007). doi:10.1002/fld.1484 · Zbl 1207.76049 · doi:10.1002/fld.1484
[47] Bazilevs, Y., Calo, V.M., Cottrell, J.A., Hughes, T.J.R., Reali, A., Scovazzi, G.: Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 197, 173–201 (2007) · Zbl 1169.76352 · doi:10.1016/j.cma.2007.07.016
[48] Hughes, T.J.R., Scovazzi, G., Tezduyar, T.E.: Stabilized methods for compressible flows. J. Sci. Comput. 43, 343–368 (2010). doi:10.1007/s10915-008-9233-5. doi:10.1007/s10915-008-9233-5 · Zbl 1203.76130 · doi:10.1007/s10915-008-9233-5
[49] Hsu, M.-C., Bazilevs, Y., Calo, V.M., Tezduyar, T.E., Hughes, T.J.R.: Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput. Methods Appl. Mech. Eng. 199, 828–840 (2010). doi:10.1016/j.cma.2009.06.019 · Zbl 1406.76028 · doi:10.1016/j.cma.2009.06.019
[50] Tezduyar, T.E.: Comments on adiabatic shock capturing in perfect gas hypersonic flows. Int. J. Numer. Methods Fluids 66, 935–938 (2011). doi:10.1002/fld.2293 · Zbl 1432.76169 · doi:10.1002/fld.2293
[51] Takizawa, K., Tezduyar, T.E.: Multiscale space-time fluid-structure interaction techniques. Comput. Mech. 48, 247–267 (2011). doi:10.1007/s00466-011-0571-z · Zbl 1398.76128 · doi:10.1007/s00466-011-0571-z
[52] Takizawa, K., Henicke, B., Tezduyar, T.E., Hsu, M.-C., Bazilevs, Y.: Stabilized space-time computation of wind-turbine rotor aerodynamics. Comput. Mech. 48, 333–344 (2011). doi:10.1007/s00466-011-0589-2 · Zbl 1398.76127 · doi:10.1007/s00466-011-0589-2
[53] Takizawa, K., Henicke, B., Montes, D., Tezduyar, T.E., Hsu, M.-C., Bazilevs, Y.: Numerical-performance studies for the stabilized space-time computation of wind-turbine rotor aerodynamics. Comput. Mech. 48, 647–657 (2011). doi:10.1007/s00466-011-0614-5 · Zbl 1334.74032 · doi:10.1007/s00466-011-0614-5
[54] Kler, P.A., Dalcin, L.D., Paz, R.R., Tezduyar, T.E.: SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems. Comput. Mech. 51, 171–185 (2013). doi:10.1007/s00466-012-0712-z · Zbl 1312.76062 · doi:10.1007/s00466-012-0712-z
[55] Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles, and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995) · Zbl 0866.76044 · doi:10.1016/0045-7825(95)00844-9
[56] Borello, D., Corsini, A., Rispoli, F.: A finite element overlapping scheme for turbomachinery flows on parallel platforms. Comput. Fluids 32, 1017–1047 (2003) · Zbl 1137.76410 · doi:10.1016/S0045-7930(02)00034-8
[57] Corsini, A., Rispoli, F.: Flow analyses in a high-pressure axial ventilation fan with a non-linear eddy viscosity closure. Int. J. Heat Fluid Flow 17, 108–155 (2005)
[58] Craft, T.J., Launder, B.E., Suga, K.: Development and application of a cubic eddy-viscosity model of turbulence. Int. J. Heat Fluid Flow 17, 108–155 (1996) · doi:10.1016/0142-727X(95)00079-6
[59] Lain, S., Sommerfeld, M.: Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective. Int. J. Heat Fluid Flow 24, 616–625 (2003) · doi:10.1016/S0142-727X(03)00055-9
[60] Tezduyar, T.E., Takizawa, K., Moorman, C., Wright, S., Christopher, J.: Space-time finite element computation of complex fluid–structure interactions. Int. J. Numer. Methods Fluids 64, 1201–1218 (2010). doi:10.1002/fld.2221 · Zbl 1427.76148 · doi:10.1002/fld.2221
[61] Baxter, L.L.: Turbulent transport of particles. Ph.D. thesis, Brigham Young University (1989)
[62] Wang, L.P.: On the dispersion of heavy particles by turbulent motion. Ph.D. thesis, Washington State University (1990)
[63] Litchford, L.J., Jeng, S.M.: Efficient statistical transport model for turbulent particle dispersion in sprays. AIAA J. 29, 1443–1451 (1991) · doi:10.2514/3.59965
[64] Jain, S.: Three-dimensional simulation of turbulent particle dispersion. Ph.D. thesis, University of Utah (1995)
[65] Borello, D., Venturini, P., Rispoli, F., Saavedra, G.Z.R.: Prediction of multiphase combustion and ash deposition within a biomass furnace. Appl. Energy 101, 413–422 (2013) · doi:10.1016/j.apenergy.2012.04.031
[66] Venturini, P., Borello, D., Iossa, C.V., Lentini, D., Rispoli, F.: Modelling of multiphase combustion and deposit formation and deposit formation in a biomass-fed boiler. Energy 35, 3008–3021 (2010) · doi:10.1016/j.energy.2010.03.038
[67] Armenio, V., Fiorotto, V.: The importance of the forces acting on particles in turbulent flows. Phys. Fluids 13, 2437–2440 (2001) · Zbl 1184.76034 · doi:10.1063/1.1385390
[68] Schiller, L., Naumann, A.: Uber die grundlegenden berechnungen bei der schwekraftaubereitung. Z. Ver. Dtsch. Ing. 77, 318–320 (1933)
[69] Smith, P.J.: 3-D turbulent particle dispersion submodel development. Quarterly progress report, Department of Energy, Pittsburgh Energy Technology Center (1991)
[70] Corsini, A., Rispoli, F., Santoriello, A.: A variational multiscale high-order finite element formulation for turbomachinery flow computations. Comput. Methods Appl. Mech. Eng. 194, 4797–4823 (2005) · Zbl 1093.76032 · doi:10.1016/j.cma.2004.11.013
[71] Keegan, M.H., Nash, D.H., Stack, M.M.: Numerical modelling of hailstone impact on the leading edge of a wind turbine blade. EWEA Annual Wind Energy Event, Vienna (2013)
[72] Evans, A.G., Gulden, M.E., Eggum, G.E., Rosenblatt, M.: Impact damage in brittle materials in the elastic response regime. Technical Report SC5023, Rockwell International Science Centre (1976)
[73] Bazilevs, Y., Hsu, M.-C., Akkerman, I., Wright, S., Takizawa, K., Henicke, B., Spielman, T., Tezduyar, T.E.: 3D simulation of wind turbine rotors at full scale. Part I: geometry modeling and aerodynamics. Int. J. Numer. Methods Fluids 65, 207–235 (2011). doi:10.1002/fld.2400 · Zbl 1428.76086 · doi:10.1002/fld.2400
[74] Hsu, M.-C., Akkerman, I., Bazilevs, Y.: Wind turbine aerodynamics using ALE-VMS: validation and role of weakly enforced boundary conditions. Comput. Mech. 50, 499–511 (2012) · Zbl 06128533 · doi:10.1007/s00466-012-0686-x
[75] Hsu, M.-C., Bazilevs, Y.: Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput. Mech. 50, 821–833 (2012) · Zbl 1311.74038 · doi:10.1007/s00466-012-0772-0
[76] Bazilevs, Y., Takizawa, K., Tezduyar, T.E.: Computational Fluid-Structure Interaction: Methods and Applications. Wiley, New York (2013). ISBN 978-0470978771 · Zbl 1286.74001 · doi:10.1002/9781118483565
[77] Bazilevs, Y., Hsu, M.-C., Takizawa, K., Tezduyar, T.E.: ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math. Models Methods Appl. Sci. 22, 1230002 (2012). doi:10.1142/S0218202512300025 · Zbl 1404.76187 · doi:10.1142/S0218202512300025
[78] Takizawa, K., Tezduyar, T.E., McIntyre, S., Kostov, N., Kolesar, R., Habluetzel, C.: Space-time VMS computation of wind-turbine rotor and tower aerodynamics. Comput. Mech. 53, 1–15 (2014). doi:10.1007/s00466-013-0888-x · Zbl 1398.76129 · doi:10.1007/s00466-013-0888-x
[79] Takizawa, K., Bazilevs, Y., Tezduyar, T.E., Hsu, M.-C., Øiseth, O., Mathisen, K.M., Kostov, N., McIntyre, S.: Engineering analysis and design with ALE-VMS and space-time methods. Arch. Comput. Meth. Eng. 21, 481–508 (2014). doi:10.1007/s11831-014-9113-0 · Zbl 1348.74104 · doi:10.1007/s11831-014-9113-0
[80] Bazilevs, Y., Takizawa, K., Tezduyar, T.E., Hsu, M.-C., Kostov, N., McIntyre, S.: Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch. Comput. Meth. Eng. 21, 359–398 (2014). doi:10.1007/s11831-014-9119-7 · Zbl 1348.74095 · doi:10.1007/s11831-014-9119-7
[81] Takizawa, K., Tezduyar, T.E., Mochizuki, H., Hattori, H., Mei, S., Pan, L., Montel, K.: Space–time VMS method for flow computations with slip interfaces (ST-SI). Math. Models Methods Appl. Sci. 25, 2377–2406 (2015). doi: 10.1142/S0218202515400126 · Zbl 1329.76345 · doi:10.1142/S0218202515400126
[82] Glauert, H.: Windmills and Fans. Springer, Berlin (1935)
[83] Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development. Technical Report NREL/TP-500-38060, National Renewable Energy Laboratory (2009)
[84] NWTC Information Portal (FAST v7). https://nwtc.nrel.gov/FAST7 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.