×

zbMATH — the first resource for mathematics

GEM-selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. (English) Zbl 1356.86022
Summary: Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility, chemical kinetics, and RMT in general. Efficient RMT simulations can be based on the operator-splitting approach, where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition, temperature, or pressure has changed. Modeling of complex natural systems requires consideration of multiphase-multicomponent geochemical models that include nonideal solutions (aqueous electrolytes, fluids, gases, solid solutions, and melts). Direct Gibbs energy minimization (GEM) methods have numerous advantages for the realistic geochemical modeling of such fluid-rock systems. Substantial improvements and extensions to the revised GEM interior point method algorithm based on Karpov’s convex programming approach are described, as implemented in the GEMS3K C/C++ code, which is also the numerical kernel of GEM-Selektor v.3 package (http://gems.web.psi.ch). GEMS3K is presented in the context of the essential criteria of chemical plausibility, robustness of results, mass balance accuracy, numerical stability, speed, and portability to high-performance computing systems. The stand-alone GEMS3K code can treat very complex chemical systems with many nonideal solution phases accurately. It is fast, delivering chemically plausible and accurate results with the same or better mass balance precision as that of conventional speciation codes. GEMS3K is already used in several coupled RMT codes (e.g., OpenGeoSys-GEMS) capable of high-performance computing.

MSC:
86A60 Geological problems
86-04 Software, source code, etc. for problems pertaining to geophysics
76U05 General theory of rotating fluids
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L10 Soil and rock mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melancon, J., Pelton, A.D., Petersen, S.: FactSage thermochemical software and databases. Calphad 26, 189–228 (2002) · doi:10.1016/S0364-5916(02)00035-4
[2] Bale, C.W., Belisle, E., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Jung, I.H., Kang, Y.B., Melancon, J., Pelton, A.D., Robelin, C., Petersen, S.: FactSage thermochemical software and databases–recent developments. Calphad 33, 295–311 (2009) · doi:10.1016/j.calphad.2008.09.009
[3] Baumann, C., Gerya, T.V., Connolly, J.A.D.: Numerical modelling of spontaneous slab breakoff dynamics during continental collision. Geol. Soc. Lond. Spec. Publ. 332, 99–114 (2010) · doi:10.1144/SP332.7
[4] Bethke, C.M.: Geochemical and Biogeochemical Reaction Modeling. Cambridge University Press, New York (2008)
[5] Borisov, M.V., Shvarov, Y.V.: Thermodynamics of Geochemical Processes. Moscow State University Publishers, Moscow (in Russian, 1992)
[6] Bruno, J., Bosbach, D., Kulik, D., Navrotsky, A.: Chemical Thermodynamics of Solid Solutions of Interest in Radioactive Waste Management. A State-of-the-art Report. OECD NEA, Paris (2007)
[7] Centler, F., Shao, H., De Biase, C., et al.: GeoSysBRNS–a flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes. Comput. Geosci. 36, 397–405 (2010) · doi:10.1016/j.cageo.2009.06.009
[8] Chudnenko, K.V.: Thermodynamic Modeling in Geochemistry: The Theory, the Algorithms, the Software, the Applications. Academic Publishing House GEO, Novosibirsk (in Russian, 2010)
[9] Chudnenko, K.V., Karpov, I.K., Kulik, D.A.: A High-Precision IPM-2 Non-linear Minimization Module of GEM-Selektor v.2-PSI Program Code for geochemical Thermodynamic Modeling. Technical Report TM-44–02–06. Paul Scherrer Institut, Villigen (2002)
[10] Connolly, J.A.D., Petrini, K.: An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J. Metamorph. Geol. 20, 697–708 (2002) · doi:10.1046/j.1525-1314.2002.00398.x
[11] Connolly, J.A.D.: Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005) · doi:10.1016/j.epsl.2005.04.033
[12] Coumou, D., Matthai, S., Geiger, S., Driesner, T.: A parallel FE–FV scheme to solve fluid flow in complex geologic media. Comput. Geosci. 34, 1697–1707 (2008) · doi:10.1016/j.cageo.2007.11.010
[13] de Capitani, C., Brown, T.H.: The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim. Cosmochim. Acta 51, 2639–2652 (1987) · doi:10.1016/0016-7037(87)90145-1
[14] de Capitani, C., Petrakakis, K.: The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral. 95, 1006–1016 (2010) · doi:10.2138/am.2010.3354
[15] Dolejs, D., Wagner, T.: Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: implications for hydrothermal mass transfer in granitic rocks. Geochim. Cosmochim. Acta 72, 526–553 (2008) · doi:10.1016/j.gca.2007.10.022
[16] Ebel, D.S., Ghiorso, M.S., Sack, R.O., Grossmann, L.: Gibbs energy minimization in gas + liquid + solid systems. J. Comput. Chem. 21, 247–256 (2000) · doi:10.1002/(SICI)1096-987X(200003)21:4<247::AID-JCC1>3.0.CO;2-J
[17] Engesgaard, P., Kipp, K.L.: A geochemical transport model for redox-controlled movement of mineral fronts in groundwater-flow systems–a case of nitrate removal by oxidation of pyrite. Water Resour. Res. 28, 2829–2843 (1992) · doi:10.1029/92WR01264
[18] Eriksson, G., Hack, K.: Chemsage–a computer program for the calculation of complex chemical equilibria. Metall. Mater. Trans. B 21, 1013–1023 (1990) · doi:10.1007/BF02670272
[19] Eriksson, G., Thompson, W.T.: A procedure to estimate equilibrium concentrations in multicomponent systems and related applications. Calphad 13, 389–400 (1989) · doi:10.1016/0364-5916(89)90027-8
[20] Ghiorso, M.S.: Algorithms for the estimation of phase stability in heterogeneous thermodynamic systems. Geochim. Cosmochim. Acta 58, 5489–5501 (1994) · doi:10.1016/0016-7037(94)90245-3
[21] GNU free software foundation: GNU Lesser General Public License. Free Software Foundation, Boston. http://www.gnu.org/licenses/lgpl.html (2007)
[22] Hammond, G., Lichtner, P., Lu, C.: Subsurface multiphase flow and multicomponent reactive transport modeling using high-performance computing. J. Phys. Conf. Ser. 78(012025), 1–10 (2007) · doi:10.1088/1742-6596/78/1/012025
[23] Karpov, I.K.: Computer-Aided Physico-Chemical Modeling in Geochemistry. Nauka Publ., Novosibirsk (in Russian, 1981)
[24] Karpov, I.K., Chudnenko, K.V., Kulik, D.A.: Modeling chemical mass-transfer in geochemical processes: thermodynamic relations, conditions of equilibria and numerical algorithms. Am. J. Sci. 297, 767–806 (1997) · doi:10.2475/ajs.297.8.767
[25] Karpov, I.K., Chudnenko, K.V., Kulik, D.A., Avchenko, O.V., Bychinskii, V.A.: Minimization of Gibbs free energy in geochemical systems by convex programming. Geochem. Int. 39, 1108–1119 (2001)
[26] Karpov, I.K., Chudnenko, K.V., Kulik, D.A., Bychinskii, V.A.: The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling. Am. J. Sci. 302, 281–311 (2002) · doi:10.2475/ajs.302.4.281
[27] Keizer, M.G., Van Riemsdijk, W.H.: ECOSAT. Technical Report. Department Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen, The Netherlands (1998)
[28] Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003) · Zbl 1031.65069
[29] Kolditz, O., Görke, U.-J., Shao, H., Wang, W. (eds.): Benchmarks and Examples for Thermo-Hydro-Mechanical/Chemical Processes in Porous Media. Series: Lecture Notes in Computational Science and Engineering, vol. 86. Springer, Berlin (2012)
[30] Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y.Y., Singh, A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B.: OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. (2012). doi: 10.1007/s12665–012–1546-x
[31] Kulik, D., Berner, U., Curti, E.: Modelling chemical equilibrium partitioning with the GEMS-PSI code. In: Smith, B., Gschwend, B. (eds.) PSI Scientific Report 2003/Volume IV, Nuclear Energy and Safety, pp. 109–122. Paul Scherrer Institut, Villigen (2004)
[32] Kulik, D.A.: Classic adsorption isotherms incorporated in modern surface complexation models: implications for sorption of actinides. Radiochim. Acta 94, 765–778 (2006) · doi:10.1524/ract.2006.94.9-11.765
[33] Kulik, D.A.: Standard molar Gibbs energies and activity coefficients of surface complexes (thermodynamic insights). In: Luetzenkirchen, J. (ed.) Surface Complexation Modelling. Interface Science and Technology, vol. 11, pp. 171–250. Elsevier, Amsterdam (2006)
[34] Lukas, H.L., Fries, S., Sundman, B.: Computational Thermodynamics: The Calphad Method. Cambridge University Press, Cambridge (2007) · Zbl 1138.80002
[35] McDermott, C.I., Walsh, R., Mettier, R., Kosakowski, G., Kolditz, O.: Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Comput. Geosci. 13, 349–361 (2009) · Zbl 1179.80027 · doi:10.1007/s10596-008-9123-9
[36] Monecke, T., Kempe, U., Trinkler, M., Thomas, R., Dulski, P., Wagner, T.: Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology 39, 295–298 (2011) · doi:10.1130/G31659.1
[37] Nakagawa, T., Tackley, P.J., Deschamps, F., Connolly, J.A.D.: Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle. Geochem. Geophys. Geosyst. (G3) 10, Q03004 (2009)
[38] Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)–a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S.G.S. Water-Resources Investigations Report 99–4259, Denver, Colorado (1999)
[39] Pfingsten, W.: Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium. Nucl. Technol. 116, 208–221 (1996)
[40] Pozo, R.: Template numerical toolkit: an interface for scientific computing in C+ +. National Institute of Standards and Trechnology (NIST), Gaithersburg, MD. http://math.nist.gov/tnt (2004)
[41] Prommer, H.: A Reactive Multicomponent Transport Model for Saturated Porous Media. User’s Manual Version 1.0. Contaminated Land Assessment and Remediation Research Centre. The University of Edinburgh, UK (2002)
[42] Rastetter, E.B.: Modeling coupled biogeochemical cycles. Front. Ecol. Environ. 9, 68–73 (2011) · doi:10.1890/090223
[43] Reed, M.H.: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528 (1982) · doi:10.1016/0016-7037(82)90155-7
[44] Reed, M.H.: Calculation of simultaneous chemical equilibria in aqueous-mineral-gas systems and its application to modeling hydrothermal processes. Rev. Econ. Geol. 10, 109–124 (1998)
[45] Reed, M.H., Spycher, N.F.: Calculation of pH and mineral equilibria in hydrothermal waters with applications to geothermometry and studies of boiling and dilution. Geochim. Cosmochim. Acta 48, 1479–1492 (1984) · doi:10.1016/0016-7037(84)90404-6
[46] Shao, H., Dmytrieva, S.V., Kolditz, O., Kulik, D.A., Pfingsten, W., Kosakowski, G.: Modeling reactive transport in non-ideal aqueous-solid solution system. Appl. Geochem. 24, 1287–1300 (2009) · doi:10.1016/j.apgeochem.2009.04.001
[47] Shao, H., Kulik D.A., Berner U., Kosakowski G., Kolditz O.: Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column. Geochem. J. 43, e37–e42 (2009) · doi:10.2343/geochemj.1.0069
[48] Shvarov, Y.V.: A general equilibrium criterion for an isobaric-isothermal model of a chemical system. Geochem. Int. 18, 38–45 (1981)
[49] Shvarov, Y.: A numerical criterion for existence of the equilibrium state in an open chemical system. Sci. Geol. Bull. 42, 365–369 (1989)
[50] Shvarov, Y.V.: HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by windows. Geochem. Int. 46, 834–839 (2008) · doi:10.1134/S0016702908080089
[51] Singh, A.K., Goerke, U.-J., Kolditz, O.: Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36, 3446–3458 (2011) · doi:10.1016/j.energy.2011.03.049
[52] Siret, D., Poulet, T., Regenauer-Lieb, K., Connolly, J.A.D.: PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling. Acta Geotech. 4, 107–115 (2009) · doi:10.1007/s11440-008-0065-0
[53] Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240, 539–558 (2005) · doi:10.1016/j.epsl.2005.09.017
[54] Tenzer, H., Park, C.L., Kolditz, O., McDermott, C.I.: Application of the geomechanical facies approach and comparison of exploration and evaluation methods used at Soultz-sous-Forets (France) and Spa Urach (Germany) geothermal sites. Environ. Earth Sci. 61, 853–880 (2010) · doi:10.1007/s12665-009-0403-z
[55] Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997) · Zbl 0874.65013
[56] Tromp, T.K., Van Cappellen, P., Key R.M.: A global model for the early diagenesis of organic carbon and organic phosphorous in marine sediments. Geochim. Cosmochim. Acta 59, 1259–1284 (1995) · doi:10.1016/0016-7037(95)00042-X
[57] Van der Lee, J., De Windt, L.: Present state and future directions of modeling of geochemistry in hydrogeological systems. J. Contam. Hydrol. 47, 265–282 (2001) · doi:10.1016/S0169-7722(00)00155-8
[58] Van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29, 265–275 (2003) · doi:10.1016/S0098-3004(03)00004-9
[59] Wagner, T., Kulik, D.A., Hingerl, F.F., Dmytrieva, S.V.: GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Canadian Mineralogist 50 (2012, in press)
[60] Wang, W., Kosakowski, G., Kolditz, O.: A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput. Geosci. 35, 1631–1641 (2009) · doi:10.1016/j.cageo.2008.07.007
[61] Wang, Y., Van Cappellen, P.: A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60, 2993–3014. (1996) · doi:10.1016/0016-7037(96)00140-8
[62] Westall, J.C., Zachary, J.L., Morel, F.M.M.: MINEQL: A Compact Program for Computation of Chemical Equilibria in Aquatic Systems. R.M. Parsons Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology, Cambridge, MA (1976)
[63] Xie, M., Kolditz, O., Moog, H.C.: A geochemical transport model for thermo-hydro-chemical (THC) coupled processes with saline water. Water Resour. Res. 47, W02545 (2011)
[64] Kosakowski, G., Kulik, D.A., Shao, H.: OpenGeoSys-GEMS: Hybrid parallelization of a reactive transport code with MPI and threads. Geophys. Res. Abstr. 14, EGU2012–2642 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.