×

zbMATH — the first resource for mathematics

A decision procedure for regular membership and length constraints over unbounded strings. (English) Zbl 06688812
Lutz, Carsten (ed.) et al., Frontiers of combining systems. 10th international symposium, FroCoS 2015, Wrocław, Poland, September 21–24, 2015. Proceedings. Cham: Springer (ISBN 978-3-319-24245-3/pbk; 978-3-319-24246-0/ebook). Lecture Notes in Computer Science 9322. Lecture Notes in Artificial Intelligence, 135-150 (2015).
Summary: We prove that the quantifier-free fragment of the theory of character strings with regular language membership constraints and linear integer constraints over string lengths is decidable. We do that by describing a sound, complete and terminating tableaux calculus for that fragment which uses as oracles a decision procedure for linear integer arithmetic and a number of computable functions over regular expressions. A distinguishing feature of this calculus is that it provides a completely algebraic method for solving membership constraints which can be easily integrated into multi-theory SMT solvers. Another is that it can be used to generate symbolic solutions for such constraints, that is, solved forms that provide simple and compact representations of entire sets of complete solutions. The calculus is part of a larger one providing the theoretical foundations of a high performance theory solver for string constraints implemented in the SMT solver CVC4.
For the entire collection see [Zbl 1355.68017].

MSC:
68T Artificial intelligence
Software:
HAMPI; JST; MONA; PASS; Pex; S3; Stranger; Z3-str
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdulla, P.A., Atig, M.F., Chen, Y.-F., Holík, L., Rezine, A., Rümmer, P., Stenman, J.: String constraints for verification. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 150–166. Springer, Heidelberg (2014) · Zbl 06349506 · doi:10.1007/978-3-319-08867-9_10
[2] Antimirov, V.: Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155(2), 291–319 (1996) · Zbl 0872.68120 · doi:10.1016/0304-3975(95)00182-4
[3] Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998) · Zbl 0948.68098 · doi:10.1017/CBO9781139172752
[4] Badban, B., Dashti, M.: Semi-linear parikh images of regular expressions via reduction. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 653–664. Springer, Heidelberg (2010) · Zbl 1287.68090 · doi:10.1007/978-3-642-15155-2_57
[5] Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, vol. 185, chapter 26, pp. 825–885. IOS Press, February 2008
[6] Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theor. Comput. Sci. 48(1), 117–126 (1986) · Zbl 0626.68043 · doi:10.1016/0304-3975(86)90088-5
[7] Bjørner, N., Tillmann, N., Voronkov, A.: Path feasibility analysis for string-manipulating programs. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 307–321. Springer, Heidelberg (2009) · Zbl 1234.68070 · doi:10.1007/978-3-642-00768-2_27
[8] Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise analysis of string expressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer, Heidelberg (2003) · Zbl 1067.68541 · doi:10.1007/3-540-44898-5_1
[9] Fu, X., Chih Li, C.: A string constraint solver for detecting web application vulnerability. In: Proceedings of the 22nd International Conference on Software Engineering and Knowledge Engineering, SEKE 2010. Knowledge Systems Institute Graduate (2010)
[10] Ghosh, I., Shafiei, N., Li, G., Chiang, W.-F.: JST: An automatic test generation tool for industrial Java applications with strings. In: Proceedings of the 2013 International Conference on Software Engineering, ICSE 2013, pp. 992–1001. IEEE Press, Piscataway (2013)
[11] Henriksen, J.G., Jensen, J.L., Jørgensen, M.E., Klarlund, N., Paige, R., Rauhe, T., Sandholm, A.: Mona: Monadic second-order logic in practice. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995) · doi:10.1007/3-540-60630-0_5
[12] Hooimeijer, P., Veanes, M.: An evaluation of automata algorithms for string analysis. In: Jhala, R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 248–262. Springer, Heidelberg (2011) · Zbl 1317.68287 · doi:10.1007/978-3-642-18275-4_18
[13] Hooimeijer, P., Weimer, W.: A decision procedure for subset constraints over regular languages. In: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementation, pp. 188–198. ACM (2009) · doi:10.1145/1542476.1542498
[14] Hooimeijer, P., Weimer, W.: Solving string constraints lazily. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, pp. 377–386. ACM (2010) · doi:10.1145/1858996.1859080
[15] Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver for string constraints. In: Proceedings of the Eighteenth International Symposium on Software Testing and Analysis, pp. 105–116. ACM (2009) · doi:10.1145/1572272.1572286
[16] Klarlund, N., Møller, A.: MONA implementation secrets. In: Yu, S., Păun, A. (eds.) CIAA 2000. LNCS, vol. 2088, pp. 182–194. Springer, Heidelberg (2001) · Zbl 0989.03500 · doi:10.1007/3-540-44674-5_15
[17] Kozen, D.: Lower bounds for natural proof systems. In: FOCS, pp. 254–266. IEEE Computer Society (1977) · doi:10.1109/SFCS.1977.16
[18] Li, G., Ghosh, I.: PASS: String solving with parameterized array and interval automaton. In: Bertacco, V., Legay, A. (eds.) HVC 2013. LNCS, vol. 8244, pp. 15–31. Springer, Heidelberg (2013)
[19] Liang, T., Reynolds, A., Tinelli, C., Barrett, C., Deters, M.: A dPLL(T) theory solver for a theory of strings and regular expressions. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 646–662. Springer, Heidelberg (2014) · Zbl 06349539 · doi:10.1007/978-3-319-08867-9_43
[20] Liang, T., Tsiskaridze, N., Reynolds, A., Tinelli, C., Barrett, C.: A decision procedure for regular membership and length constraints over unbounded strings. Technical report, Department of Computer Science, The University of Iowa (2015). http://www.cs.uiowa.edu/ tinelli/papers.html · Zbl 06688812
[21] Lu, K.Z.M.: XHaskell - Adding Regular Expression Type to Haskell. PhD thesis, National University of Singapore (2009)
[22] Makanin, G.S.: The problem of solvability of equations in a free semigroup. English Rransl. in Math USSR Sbornik 32, 147–236 (1977) · Zbl 0371.20047
[23] Matiyasevich, Y.V.: Hilbert’s tenth problem and paradigms of computation. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 310–321. Springer, Heidelberg (2005) · Zbl 1115.03004 · doi:10.1007/11494645_39
[24] Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966) · Zbl 0154.25801 · doi:10.1145/321356.321364
[25] Plandowski, W.: Satisfiability of word equations with constants is in pspace. J. ACM 51(3), 483–496 (2004) · Zbl 1192.68372 · doi:10.1145/990308.990312
[26] Rosu, G., Viswanathan, M.: Testing extended regular language membership incrementally by rewriting. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 499–514. Springer, Heidelberg (2003) · Zbl 1038.68562 · doi:10.1007/3-540-44881-0_35
[27] Schulz, K. (ed.): Word Equations and Related Topics. Springer-Verlag New York, Inc., New York (1990)
[28] Tateishi, T., Pistoia, M., Tripp, O.: Path- and index-sensitive string analysis based on monadic second-order logic. ACM Trans. Softw. Eng. Methodol. 33, 1–33 (2013) · doi:10.1145/2522920.2522926
[29] Tillmann, N., de Halleux, J.: Pex–white box test generation for.NET. In: Beckert, B., Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 134–153. Springer, Heidelberg (2008) · Zbl 05267203 · doi:10.1007/978-3-540-79124-9_10
[30] Trinh, M.-T., Chu, D.-H., Jaffar, J.: S3: A symbolic string solver for vulnerability detection in web applications. In: Yung, M., Li, N. (eds.) Proceedings of the 21st ACM Conference on Computer and Communications Security (2014) · doi:10.1145/2660267.2660372
[31] Veanes, M.: Applications of symbolic finite automata. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS, vol. 7982, pp. 16–23. Springer, Heidelberg (2013) · Zbl 1298.68160 · doi:10.1007/978-3-642-39274-0_3
[32] Veanes, M., Bjørner, N., de Moura, L.: Symbolic automata constraint solving. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, pp. 640–654. Springer, Heidelberg (2010) · Zbl 1306.68097 · doi:10.1007/978-3-642-16242-8_45
[33] Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis tool for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 154–157. Springer, Heidelberg (2010) · Zbl 05702238 · doi:10.1007/978-3-642-12002-2_13
[34] Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A z3-based string solver for web application analysis. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pp. 114–124. ACM, New York (2013) · doi:10.1145/2491411.2491456
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.