Leech, Jonathan Skew lattices in rings. (English) Zbl 0669.06006 Algebra Univers. 26, No. 1, 48-72 (1989). A skew lattice is a noncommutative lattice satisfying the absorption laws: \(x\vee (x\wedge y)=x=x\wedge (x\vee y)\), \((x\wedge y)\vee y=y=(x\vee y)\wedge y\). Let \(D=L\times R\) be the Cartesian product of two nonempty sets. Then the operations \((a,b)\vee (a',b')=(a',b)\), \((a,b)\wedge (a',b')=(a,b')\) define on D a skew lattice, which is called rectangular skew lattice. The relation \(x\equiv y\) iff \(x\wedge y\wedge x=x\) and \(y\wedge x\wedge y=y\) is a congruence relation of the skew lattice S, the equivalence classes are maximal rectangular subalgebras, and the factor is the maximal lattice image of S. x\({\mathcal R}y\) iff \(x\wedge y=y\) and \(y\vee x=x\) or dually \(x\vee y=x\) and \(y\vee x=y\). Then \({\mathcal R}\) is a congruence relation of S. Let \((A,+,\cdot)\) be a unitary ring, then two operations are defined on A: \(x\vee y=x+y-xy\), \(x\wedge y=x\cdot y\). E(A) denotes the set of all idempotents. Let \(S\subseteq E(A)\) be a set closed under \(\vee\) and \(\wedge\), then (S,\(\vee,\wedge)\) is a skew lattice in (A,\(\vee,\wedge)\). Some properties of these skew lattices are established. Finally, the author considers skew lattices which correspond to simple and semisimple Artinian rings. Reviewer: E.T.Schmidt Cited in 4 ReviewsCited in 47 Documents MSC: 06B99 Lattices Keywords:skew lattices in rings; noncommutative lattice; rectangular skew lattice; maximal rectangular subalgebras; congruence relation; Artinian rings PDF BibTeX XML Cite \textit{J. Leech}, Algebra Univers. 26, No. 1, 48--72 (1989; Zbl 0669.06006) Full Text: DOI References: [1] Dilworth, R. P.,Lattices with unique complements, Trans. AMS,57 (1945), pp. 123-54. · Zbl 0060.06103 [2] Gerhardts, M. D.,Zur Charakterisierung distributiver Schiefverb?nde, Math Ann.,161 (1965), pp. 231-240. · Zbl 0151.01701 [3] Gerhardts, M. D.,Schr?gverb?nde und Quasiordnungen, Math. Ann.,181 (1969), pp. 65-73. · Zbl 0175.01403 [4] Howie, J. M.,An Introduction to Semigroup Theory, Academic Press, 1976. · Zbl 0355.20056 [5] Jordan, P.,Uber nichtkommutative Verbande, Arch. Math.,2 (1949), pp. 56-59. · Zbl 0037.15604 [6] Jordan, P.,Halbgruppen von Idempotenten und nichtkommutative Verb?nde, J. reine angew. Math.,211 (1962), pp. 136-161. · Zbl 0118.02303 [7] Leech, J. E.,Normal Skew Lattices, Semigroup Forum, to appear. · Zbl 0754.06004 [8] Leech, J. E.,Primitive Skew Lattices and Completely Simple Semigroups, submitted. [9] Leech, J. E.,Skew Lattices of Partial Functions, Algebra Universalis, to appear. · Zbl 0792.06008 [10] Petrich, M.Lectures on Semigroups, John Wiley and Sons, 1977. · Zbl 0369.20036 [11] Schein, B.,Pseudosemilattices and Pseudolattices, Amer. Math. Soc. Transl. (2),119 (1983), pp. 1-16. · Zbl 0502.06001 [12] Schweigert, D.,Near Lattices, Math. Slovaca,23 (1982), pp. 313-317. · Zbl 0492.06007 [13] Schweigert, D.,Distributive Associative Near Lattices, Math. Slovaca,35 (1985), pp. 313-317. · Zbl 0578.06005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.