zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Derivatives and integrals with respect to the order of the Struve functions $H\sb{\nu}(x)$ and $L\sb{\nu}(x)$. (English) Zbl 0669.33009
In continuation of similar work for $J\sb{\nu}$, the author obtains these derivatives and integrals (from 0 to $\infty)$ in the form of integrals by differentiating or integrating, respectively, an integral representation of the given functions, or by the Laplace transform method. Results for $L\sb{\nu}$ are obtained from those for $H\sb{\nu}$ by the familiar relation between these two functions. 5S-tables of the associated Volterra function and of some auxiliary integrals are included.
Reviewer: E.Kreyszig

33C10Bessel and Airy functions, cylinder functions, ${}_0F_1$
Full Text: DOI
[1] Abramowitz, A.; Stegun, I. E.: 2nd ed. Handbook of mathematical functions. Handbook of mathematical functions (1965) · Zbl 0171.38503
[2] Ansel, P. R.; Fisher, R. A.: Note on the numerical evaluation of a Bessel function derivative. Proc. London math. Soc. 24, 54-56 (1926)
[3] Apelblat, A.: Some integrals of gamma, polygamma and Volterra functions. IMA J. Appl. math. 34, 173-186 (1985) · Zbl 0583.33012
[4] Apelblat, A.; Kravitsky, N.: Integral representation of derivatives and integrals with respect to the order of the Bessel functions, J,$(t), iv(t)$, the anger function $Jv(t)$ and the integral Bessel function $Jiv(t)$. IMA J. Appl. math. 34, 187-210 (1985) · Zbl 0583.33006
[5] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G.: 2nd ed. Higher transcendental functions. Higher transcendental functions 3, 217-227 (1965)
[6] Magnus, W.; Oberhettinger, F.; Soni, R. P.: Formulas and theorems for the special functions of mathematical physics. (1966) · Zbl 0143.08502
[7] Oberhettinger, F.: On the derivative of the Bessel functions with respect to the order. Stud. appl. Math. 37, 75-78 (1958) · Zbl 0111.06607
[8] Oberhettinger, F.; Badii, L.: Tables of Laplace transforms. (1973) · Zbl 0285.65079
[9] Petiau, G.: La théorie des fonctions de Bessel. (1955) · Zbl 0067.04704
[10] Watson, G. N.: A treatise on the theory of Bessel functions. (1958) · Zbl 0083.20702
[11] Wienke, B. R.: Order derivatives of Bessel functions. Bull. Calcutta math. Soc. 69, 389-392 (1977) · Zbl 0412.33009