Michaux, B.; Rakotoson, J. M.; Shen, J. On the existence and regularity of solutions of a quasilinear mixed equation of Leray-Lions type. (English) Zbl 0669.35080 Acta Appl. Math. 12, No. 3, 287-316 (1988). The main object of this article is to study the existence and regularity of solutions of quasilinear equations. One specific application is the equation governing the flow of a perfect and isentropic fluid in a rectangle domain with the deviation as well as the Mach number distributions prescribed along the channel walls. The authors analyze this equation by setting it in a more general framework \[ (1)\text{ Find }u\in W^{1,p}(\Omega)\cap L^{\infty}(\Omega)\text{ such that } Au+F(u,\nabla u)=T\text{ in \(\Omega\) and }u-g\in W_ 0^{1,p}(\Omega). \] Here \(\Omega\) denotes a bounded set of \({\mathbb{R}}^ n\), \(Au=-(\partial /\partial x_ i)a_ i(x,u,\nabla u)\) is an elliptic-hyperbolic operator which maps \(W^{1,p}(\Omega)\cap L^{\infty}(\Omega)\) into \(W^{- 1,p'}(\Omega)\) \((1/p+1/p'=1)\) and such that for almost every \(x\in \Omega\), all \(u\in I\subset {\mathbb{R}}^ 1\) and all \(\xi \in {\mathbb{R}}^ n\) \(a_ i(x,u,\xi)\xi_ i\geq \nu (u)| \xi |^ p,\) g is given in \(W^{1,p}(\Omega)\cap L^{\infty}(\Omega)\) and F is in \(W^{- 1,p'}(\Omega).\) It is not assumed that the operator A is elliptic on the real axis but, that there exists an interval \(I=(0,u_ 0)\), \(u_ 0>0\) in which the function \(\nu\) (u) is continuous and strictly positive. The authors give assumptions such that a Hölder continuous weak solution on the problem (1) exists. They show how the physical model case is represented by (1) and propose a numerical scheme based on a finite difference method. Reviewer: M.Schneider Cited in 6 Documents MSC: 35M99 Partial differential equations of mixed type and mixed-type systems of partial differential equations 35R30 Inverse problems for PDEs 76N15 Gas dynamics (general theory) 35J20 Variational methods for second-order elliptic equations 35J60 Nonlinear elliptic equations 76G25 General aerodynamics and subsonic flows 35Q99 Partial differential equations of mathematical physics and other areas of application Keywords:existence; regularity; quasilinear; perfect and isentropic fluid; rectangle domain; elliptic-hyperbolic operator; Hölder continuous weak solution; numerical scheme; finite difference method PDF BibTeX XML Cite \textit{B. Michaux} et al., Acta Appl. Math. 12, No. 3, 287--316 (1988; Zbl 0669.35080) Full Text: DOI OpenURL References: [1] Boccardo, L., Murat, F., and Puel, J. P.: Existence de solutions faibles pour des équations elliptiques quasilinéaires à croissance quadradique, in H. Brézis and J. L. Lions (eds.), Nonlinear Part. Diff. Equ. and Their Applications, Collège de France, séminaire Vol. IV Pitman, London, 1983, pp. 19-73; see also Ann. della Scuola Norm. Sup. Pisa XI (1984), 213-235. · Zbl 0588.35041 [2] Browder, F. E.: Existence theorems for nonlinear partial differential equations, in S. S. Chern and S. Smale (eds.) Symposia in Pure Mathematics, Vol. XVI, Amer. Math. Soc., Providence, R.I., 1970, pp. 1-60. · Zbl 0211.17204 [3] Castellant, J. P.: Introduction géométrique à la mécanique des fluides, Etude SNECMA, Février 1986. [4] Giqueaux, M.: Mécanique des fluides théorique, Librairie Polytechnique Béranger, Paris and Liège, 1957. [5] Hess, P.: On a second order nonlinear elliptic boundary value problem, in L. Cesari, R. Kannan and H. F. Weinberger (eds.) Nonlinear Analysis: A Collection of Papers in Honor of Erich. H. Rothe, Academic Press, New York, 1978, pp. 99-107 [6] Hawthorne, W. R., (ed.): High Speed Aerodynamics and Jet Propulsion: Aerodynamics of Turbines and Compressors, Vol. X, Princeton University Press, 1964. · Zbl 0134.45502 [7] Ladyzens’kaja, O. A. and Uraltceva, N. N.: Linear and Quasilinear Elliptic Equations, Academic Press, New York, London, 1968. [8] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Dunod, Paris, 1969. [9] Michaux, B.: Méthode inverse de détermination de canaux courbes transsoniques, Rapport SNECMA, Octobre 1986. [10] Michaux, B.: Méthodes inverses pour la détermination des profils d’aubes transsoniques des turbomachines, Thése, Univ. de Paris-Sud, 1988. [11] Michaux, B., Rakotoson, J. M., and Shen, J.: On the approximation of a quasilinear mixed problem. (Inst. Appl. Math. Anl. Scient. Comp. Preprint # 8808 (1988), Indiana University.) To appear in Modélisation Mathématique et Analyse Numérique. · Zbl 0669.35080 [12] Moser, J.: A new proof of De Gorgi’s theorem concerning the regularity problem for elliptic differential equations, Commun. Pure Appl. Math. 13 (1960), 457-468. · Zbl 0111.09301 [13] Mossino, J. and Rakotoson, J. M.: Isoperimetric inequalities in parabolic equations, Ann. della Scuola Norm. Sup. Pisa (4) XII (1986), 51-73. · Zbl 0652.35053 [14] Mossino, J. and Temam, R.: Directional derivative of the increasing rearrangement mapping and application to a queer differential equation in plasma physics, Duke Math. J. 41 (1981), 475-495. · Zbl 0476.35031 [15] Rakotoson, J. M.: Quelques propriétés du réarrangements relatif, C.R. Acad. Sci. Paris serie I, 302, No. 15 (1986). [16] Rakotoson, J. M.: Réarrangement relatif dans les équations quasilinéaires avec un second membre distribution: Application à un résultat d’existence et de régularité, J. Diff. Equ. 66, No. 6 (1987). [17] Rakotoson, J. M.: Existence of bounded solutions of some degenerate quasilinear elliptic equations, Commun. Part. Diff. Equ., 12 (6), (1987), 633-676. · Zbl 0627.47035 [18] Rakotoson, J. M.: On some degenerate and nondegenerate quasilinear elliptic systems with nonhomogeneous Dirichlet boundary condition, To appear in Nonlinear Analysis Th. Meth. Appl. · Zbl 0686.35041 [19] Rakotoson, J. M. and Temam, R.: Relative rearrangement in quasilinear variational inequalities, Preprint d’Orsay, France (1987), Ind. Univ. Math. J. 36 (1987). · Zbl 0619.46036 [20] Stanitz, J. D.: Design of two-dimensional channels with prescribed velocity distributions along channels walls, NACA 2593/2595 (1959). [21] Stanitz, J. D. and Sheldrake, L.T.: Application of design method to high-solidity cascades and tests of an impulse cascade with 90{\(\deg\)} of turning, NACA TN 2652 (1962). [22] Trudinger, N. S.: On Harnack inequalities and their application to quasilinear elliptic equations, Commun. Pure Appl. Math. (1967). · Zbl 0153.42703 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.