Vetrov, L. G. Bilinear decompositions of two-dimensional probability densities with respect to orthogonal polynomials. (Russian) Zbl 0669.60022 Teor. Veroyatn. Mat. Stat., Kiev 39, 24-29 (1988). Let f(x) be the probability density function of an arbitrary random variable and \(\{\) F(x), \(k=0,1,...\}^ a \)sequence of orthonormal polynomials with weighting function f(x). Consider a function \[ (1)\quad g(x,y)=f(x)f(y)(1+\sum^{\infty}_{k=1}c_ kF_ k(x)F_ k(y)). \] The problem of determining necessary conditions for the right hand side of (1) to be a bivariate probability density function is considered. The answer is given in terms of the moment problem solution. When f(x) is Poisson density this condition is sufficient. Reviewer: L.G.Vetrov Cited in 1 Review MSC: 60E05 Probability distributions: general theory 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) Keywords:orthonormal polynomials; bivariate probability density function; moment problem solution PDFBibTeX XMLCite \textit{L. G. Vetrov}, Teor. Veroyatn. Mat. Stat., Kiev 39, 24--29 (1988; Zbl 0669.60022)