×

On Newton-like methods to enclose solutions of nonlinear equations. (English) Zbl 0669.65039

The solution of nonlinear equation systems \(F(x)=0\), where \(x\in {\mathbb{R}}^ n\), is commonly based on a local linearization of F(x). G. Alefeld and J. Herzberger [Introduction to Interval Computations (1983; Zbl 0552.65041)] have shown an interval arithmetic solution may be affected by splitting the interval Jacobian matrix [A] as [M]-[N], with suitable choice of [M]. Rather than compute the Jacobian and hence perform a complete interval Gaussian algorithm each iterate, various Newton-like methods are described, based on several steps with [M] and [N] being fixed.
Theorems concerning the feasibility of the method and its global convergence, as well as the speed of convergence and the quality of the enclosure attained, are derived. Two numerical examples, one based on a simple nonlinear Dirichlet problem, the other on a nonlinear integral equation, are used to illustrate the method, each using both Jacobi and Gauss-Seidel splitting.
Reviewer: A.Swift

MSC:

65H10 Numerical computation of solutions to systems of equations
65G30 Interval and finite arithmetic

Citations:

Zbl 0552.65041
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] G. Alefeld: On the convergence of some interval-arithmetic modifications of Newton’s method. SIAM J. Numer. Anal. 21 (1984), 363-372. · Zbl 0536.65026
[2] G. Alefeld J. Herzberger: Introduction to interval computations. Academic Press, New York, 1983. · Zbl 0552.65041
[3] C. T. H. Baker: The numerical treatment of integral equations. Clarendon Press, Oxford, 1977. · Zbl 0373.65060
[4] W. Barth. E. Nuding: Optimale Lösung von Intervallgleichungssystemen. Computing 12 (1974), 117-125. · Zbl 0275.65008
[5] S. Chandrasekhar: Radiative Transfer. Dover, New York, 1960. · Zbl 0037.43201
[6] P. Frank R. Mises: Die Differential- und Integralgleichungen der Mechanik und Physik. Bd. 1. Nachdruck. Dover Publications, New York, 1961. · Zbl 0098.29405
[7] A. Frommer: Monotonie und Einschliessung beim Brown-Verfahren. Dissertation, Universisität Karlsruhe, 1986. · Zbl 0613.65051
[8] D. Greenspan: Discrete Numerical Methods in Physics and Engineering. Academic Press, New York, 1974. · Zbl 0288.65001
[9] U. Kulisch W. L. Miranker: Computer Arithmetic in Theory and Practice. Academic Press, New York, 1981. · Zbl 0487.65026
[10] U. Kulisch W. L. Miranker: A new approach to scientific computation. Academic Press, New York, 1983. · Zbl 0538.00023
[11] G. Mayer: Comparison theorems for iterative methods based on strong splittings. SIAM J. Numer. Anal. 24 (1987), 215-227. · Zbl 0614.65030
[12] G. Mayer: Reguläre Zerlegungen und der Satz von Stein und Rosenberg für Intervallmatrizen. Habilitationsschrift. Universität Karlsruhe, 1986.
[13] A. Neumaier: New techniques for the analysis of linear interval equations. Lin. Alg. Appl. 58 (1984), 273-325. · Zbl 0558.65019
[14] A. Neumaier: Interval iteration for zeros of systems of equations. BIT 25 (1985), 256 - 273. · Zbl 0575.65045
[15] J. M. Ortega: Numerical analysis. A second course. Academic Press, New York, 1972. · Zbl 0248.65001
[16] J. M. Ortega W. C. Rheinboldt: Iterative solution of nonlinear equations in several variables. Academic Press, New York, 1970. · Zbl 0241.65046
[17] L. B. Rall: Computational solution of nonlinear operator equations. Krieger Publishing Company, New York, 1979. · Zbl 0476.65033
[18] L. B. Rall: An introduction to the scientific computing language PASCAL-SC. MRC Technical Summary Report # 2644, Mathematics Research Center University of Wisconsin, Madison, 1984.
[19] H. Schwandt: Schnelle fast global konvergente Verfahren für die Fünf-Punkt-Diskretisierung der Poissongleichung mit Dirichletschen Randbedingungen auf Rechteckgebieten. Dissertation, Technische Universität Berlin, 1981. · Zbl 0474.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.