×

zbMATH — the first resource for mathematics

Rheological effects on the levelling dynamics of thin fluid films. (English) Zbl 1356.76038
Summary: Purpose{
} - The purpose of this paper is to investigate numerically the effect of rheology on the leveling of thin fluid films on horizontal solid substrates. {
}Design/methodology/approach{
} - A mathematical model based on the lubrication approximation which defines non-Newtonian rheology using a Power-law model is presented. The rheology is described by two parameters: the consistency factor and the flow behavior index. The resulting highly non-linear coupled set of equations is discretized using Finite-Difference and the resulting algebraic system is solved via an efficient Multigrid algorithm. {
}Findings{
} - Importantly, the non-dimensionalization process leads to a pair of Partial Differential Equations which depends on one parameter only, the flow behavior index. The authors show that the consistency factor only affects the time scale of the leveling process, hence stretching or contracting the time line. Results for the leveling of sinusoidal perturbations of the fluid film highlights important differences between the leveling of shear-thinning and shear-thickening fluids. In a normalized time frame, the onset of leveling occurs earlier for the shear-thinning fluid than for the shear-thickening one. However, the dimensionless leveling rate is higher for the shear-thickening fluid than the shear-thinning one. This results in a “threshold thickness” which delimits two regimes: the shear-thinning fluid levels to a thickness above this threshold faster than the shear-thickening fluid but the opposite is true for a film thickness below this threshold. An important aspect of this study is the verification of the numerical implementation using the Method of Manufactured Solutions (MMS), a first in the context of thin film studies. The paper also highlights differences between the leveling of two-dimensional and three-dimensional thickness perturbations. {
}Originality/value{
} - The study of the leveling of disturbances at the free surface of a liquid film using a Power-law rheological model does not appear to have been covered in the literature. Also, the paper uses the MMS to test the validity of the implementation. This appears to be the first time it has been used in the context of the lubrication approximation. Finally, unlike most prior studies, the work does away with the planar assumption.

MSC:
76A20 Thin fluid films
Software:
FILMPAR
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmed, G. , Sellier, M. , Lee, Y. , Jermy, M. and Taylor, M. (2013), ”Modeling the spreading and sliding of Power-law droplets”, Colloids and Surfaces A: Physicochemical and Engineering Aspects , Vol. 432, pp. 2-7. , · Zbl 1356.76038
[2] Charpin, J.P.F. , Lomb, M. and Myers, T.G. (2007), ”Spin coating of non-Newtonian fluids with a moving front”, Physical Review E , Vol. 76 No. 1 Pt 2, p. 016312.
[3] Craster, R.V. and Matar, O.K. (2009), ”Dynamics and stability of thin liquid films”, Review of Modern Physics , Vol. 81 No. 3, pp. 1131-1198. , · Zbl 1356.76038
[4] Dechelette, A. , Sojka, P.E. and Wassgren, C.R. (2010), ”Non-Newtonian drops spreading on a flat surface”, Journal of Fluids Engineering , Vol. 132 No. 10, pp. 101302-1-101302-7. , · Zbl 1356.76038
[5] de Gennes, P.G. (1985), ”Wetting: statics and dynamics”, Reviews of Modern Physics , Vol. 57 No. 3, pp. 827-863. , · Zbl 1356.76038
[6] Eley, R.R. (2012), ”Rheology and viscometry”, in Koleske, J.V. (Ed.), Paint and Coating Testing Manual: 15th Edition of the Gardner-Sward Handbook , 2nd ed., American Society for Testing & Materials.
[7] Ganguly, A. , Reza, M. and Gupta, A.S. (2012), ”Thin-film flow of a Power-law fluid down an inclined plane”, Journal of Fluids Engineering-Transactions of the ASME , Vol. 134 No. 4, pp. 1-5.
[8] Gaskell, P.H. , Lee, Y.C. and Thompson, H.M. (2010), ”Thin film flow over and around surface topography: a general solver for the long-wave approximation and related equations”, CMES-Computer Modeling in Engineering & Sciences , Vol. 62 No. 1, pp. 77-112. · Zbl 1231.76018
[9] Gaskell, P.H. , Jimack, P.K. , Sellier, M. and Thompson, H.M. (2004), ”Efficient and accurate time adaptive multigrid simulations of droplet spreading”, International Journal for Numerical Methods in Fluids , Vol. 45 No. 11, pp. 1161-1186. , · Zbl 1060.76617
[10] Gaskell, P.H. , Koh, Y.Y. , Jimack, P.K. , Lee, Y.C. and Thompson, H.M. (2009), ”Droplet migration: quantitative comparisons with experiment”, European Physical Journal-Special Topics , Vol. 1 No. 1, pp. 117-120.
[11] Heining, C. and Aksel, N. (2010), ”Effects of inertia and surface tension on a Power-law fluid flowing down a wavy incline”, International Journal of Multiphase Flow , Vol. 36 Nos 11-12, pp. 847-857. , · Zbl 1356.76038
[12] Howison, S.D. , Moriarty, J.A. , Ockendon, J.R. , Terrill, E.L. and Wilson, S.K. (1997), ”A mathematical model for drying paint layers”, Journal of Engineering Mathematics , Vol. 32 No. 4, pp. 377-394. , · Zbl 0910.76006
[13] Hussain, M. , Kar, S. and Puniyani, R. (1999), ”Relationship between Power law coefficients and major blood constituents affecting the whole blood viscosity”, Journal of Biosciences , Vol. 24 No. 3, pp. 329-337. , · Zbl 1356.76038
[14] Iyer, R.R. and Bousfield, D.W. (1996), ”The leveling of coating defects with shear thinning rheology”, Chemical Engineering Science , Vol. 51 No. 20, pp. 4611-4617. , · Zbl 1356.76038
[15] Keunings, R. and Bousfield, D.W. (1987), ”Analysis of surface tension driven leveling in horizontal viscoelastic films”, Journal of Non-Newtonian Fluid Mechanics , Vol. 22, pp. 219-233. , · Zbl 0613.76007
[16] Kheshgi, H. and Scriven, L. (1988), ”The evolution of disturbances in horizontal films”, Chemical Engineering Science , Vol. 43 No. 4, pp. 793-801. , · Zbl 1356.76038
[17] Lee, Y.C. , Thompson, H.M. and Gaskell, P.H. (2007), ”An efficient adaptive multigrid algorithm for predicting thin film flow on surfaces containing localised topographic features”, Computers & Fluids , Vol. 36 No. 5, pp. 838-855. , · Zbl 1194.76157
[18] Lee, Y.C. , Thompson, H.M. and Gaskell, P.H. (2009), ”FILMPAR: a parallel algorithm designed for the efficient and accurate computation of thin film flow on functional surfaces containing micro-structure”, Computer Physics Communications , Vol. 180 No. 12, pp. 2634-2649. , · Zbl 1356.76038
[19] Livescu, S. , Roy, R.V. and Schwartz, L.W. (2011), ”Leveling of thixotropic liquids”, Journal of Non-Newtonian Fluid Mechanics , Vol. 166 Nos 7-8, pp. 395-403. , · Zbl 1282.76063
[20] Mei, C. (2002), ”Lecture notes on Advanced Fluid Dynamics of the Environment”, available at: (accessed December 26, 2013).
[21] Miladinova, S. , Lebon, G. and Toshev, E. (2004), ”Thin-film flow of a Power-law liquid falling down an inclined plate”, Journal of Non-Newtonian Fluid Mechanics , Vol. 122 Nos 1-3, pp. 69-78. , · Zbl 1143.76341
[22] Murphy, J. (1968), ”RS/T/31/68, Tech. Rep.”, Paint Research Association Internal Report.
[23] Myers, T.G. (1998), ”Thin films with high surface tension”, SIAM Review , Vol. 40 No. 3, pp. 441-462. , · Zbl 0908.35057
[24] Myers, T.G. (2005), ”Application of non-Newtonian models to thin film flow”, Physical Review E -Statistical, Nonlinear and Soft Matter Physics , Vol. 72 No. 6, pp. 066302-1 to 066302-11. , · Zbl 1356.76038
[25] Orchard, S. (1963), ”On surface levelling in viscous liquids and gels”, Applied Scientific Research , Vol. 11 No. 4, pp. 451-464. · Zbl 0112.41601
[26] Oron, A. , Davis, S.H. and Bankoff, S.G. (1997), ”Long-scale evolution of thin liquid films”, Review of Modern Physics , Vol. 69 No. 3, pp. 931-980. , · Zbl 1356.76038
[27] Overdiep, W.S. (1986), ”The levelling of paints”, Coatings , Vol. 14 No. 2, pp. 159-175. · Zbl 1356.76038
[28] Perazzo, C.A. and Gratton, J. (2003), ”Thin film of non-Newtonian fluid on an incline”, Physical Review E , Vol. 67 No. 1 Pt 2, pp. 016307-1-016307-6.
[29] Roache, P. (1998a), Verification and Validation in Computational Science and Engineering , ISBN 9780913478080, Hermosa Pub, Socorro, New Mexico.
[30] Roache, P. (1998b), Computational Fluid Dynamics , ISBN 9780913478097, Hermosa Pub. · Zbl 0251.76002
[31] Robertson, A.M. (2005), ”Lecture notes on non-Newtonian fluids”, p. 40, available at: NonNewtonianNotes.pdf (accessed December 26, 2013).
[32] Salez, T. , McGraw, J.D. , Cormier, S.L. , Bäumchen, K. , Dalnoki-Veress, E. and Raphäel (2012), ”Numerical solutions of thin film equations for polymer flows”, The European Physical Journal E , Vol. 35 No. 114, pp. 1-9.
[33] Schwartz, L.W. (1998), ”Hysteretic effects in droplet motions on heterogeneous substrates: direct nu-merical simulation”, Langmuir , Vol. 14 No. 12, pp. 3440-3453. , · Zbl 1356.76038
[34] Schwartz, L.W. and Eley, R.R. (1998), ”Simulation of droplet motion on low-energy and heterogeneous surfaces”, Journal of Colloid and Interface Science , Vol. 202 No. 1, pp. 173-188. , · Zbl 1356.76038
[35] Sellier, M. (2003), ”The numerical simulation of thin film flow over heterogeneous substrates”, PhD thesis, University of Leeds.
[36] Steinberg, S. and Roache, P.J. (1985), ”Symbolic manipulation and computational fluid dynamics”, Journal of Computational Physics , Vol. 57 No. 2, pp. 251-284. , · Zbl 0588.76015
[37] Tsai, B. , Carvalho, M.S. and Kumar, S. (2010), ”Leveling of thin films of colloidal suspensions”, Journal of Colloid and Interface Science , Vol. 343 No. 1, pp. 306-313. , · Zbl 1356.76038
[38] Wang, X.D. , Lee, D.J. , Peng, X.F. and Lai, J.Y. (2007a), ”Spreading dynamics and dynamic contact angle of non-Newtonian fluids”, Langmuir The Acs Journal Of Surfaces And Colloids , Vol. 23 No. 15, pp. 8042-8047. , · Zbl 1356.76038
[39] Wang, X.D. , Zhang, Y. , Lee, D.J. and Peng, X.F. (2007b), ”Spreading of completely wetting or partially wetting Power-law fluid on solid surface”, Langmuir The Acs Journal Of Surfaces and Colloids , Vol. 23 No. 18, pp. 9258-9262. , · Zbl 1356.76038
[40] Wilson, S.K. (1993), ”The leveling of paint films”, IMA Journal of Applied Mathematics , Vol. 50 No. 2, pp. 149-166, ISSN 0272-4960. , · Zbl 0773.76029
[41] Yatim, Y.M. , Wilson, S.K. and Duffy, B.R. (2010), ”Unsteady gravity-driven slender rivulets of a Power-law fluid”, Journal of Non-Newtonian Fluid Mechanics , Vol. 165 Nos 21-22, pp. 1423-1430. , · Zbl 1274.76078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.