zbMATH — the first resource for mathematics

Derivation and analysis of lattice Boltzmann schemes for the linearized Euler equations. (English) Zbl 1357.76070
Summary: We derive Lattice Boltzmann (LBM) schemes to solve the linearized Euler equations in 1D, 2D, and 3D with the future goal of coupling them to an LBM scheme for Navier Stokes equations and a finite volume scheme for linearized Euler equations. The derivation uses the analytical Maxwellian in a BGK model. In this way, we are able to obtain second-order schemes. In addition, we perform an \(L^2\)-stability analysis. Numerical results validate the approach.

76M28 Particle methods and lattice-gas methods
76M12 Finite volume methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI arXiv
[1] Hasert, M., Multi-scale lattice Boltzmann simulations on distributed octrees, (2014), RWTH Aachen University, (Ph.D thesis)
[2] Degond, P.; Jin, S., A smooth transition model between kinetic and diffusion equations, SIAM J. Numer. Anal., 42, 6, 2671-2687, (2005) · Zbl 1086.82005
[3] Degond, P.; Jin, S.; Mieussens, L., A smooth transition model between kinetic and hydrodynamic equations, J. Comput. Phys., 209, 2, 665-694, (2005) · Zbl 1138.82324
[4] He, X.; Luo, L.-S., A priori derivation of the lattice Boltzmann equation, Phys. Rev. E, 55, 6, R6333-R6336, (1997)
[5] Junk, M.; Klar, A.; Luo, L.-S., Asymptotic analysis of the lattice Boltzmann equation, J. Comput. Phys., 210, 2, 676-704, (2005) · Zbl 1079.82013
[6] Sterling, J. D.; Chen, S., Stability analysis of lattice Boltzmann methods, J. Comput. Phys., 123, 1, 196-206, (1996) · Zbl 0840.76078
[7] Lallemand, P.; Luo, L., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61, 6 Pt A, 6546-6562, (2000)
[8] Chen, H.; Teixeira, C., H-theorem and origins of instability in thermal lattice Boltzmann models, Comput. Phys. Comm., 129, 1-3, 21-31, (2000) · Zbl 0985.76070
[9] Karlin, I. V.; Ferrante, A.; Öttinger, H. C., Perfect entropy functions of the lattice Boltzmann method, Europhys. Lett., 47, 2, 182-188, (1999)
[10] Banda, M. K.; Yong, W.-A.; Klar, A., A stability notion for lattice Boltzmann equations, SIAM J. Sci. Comput., 27, 6, 2098-2111, (2006) · Zbl 1100.76051
[11] Junk, M.; Yong, W.-A., Weighted \(L^2\)-stability of the lattice Boltzmann method, SIAM J. Numer. Anal., 47, 3, 1651-1665, (2009) · Zbl 1406.65075
[12] Junk, M.; Yang, Z., Convergence of lattice Boltzmann methods for Navier-Stokes flows in periodic and bounded domains, Numer. Math., 112, 1, 65-87, (2009) · Zbl 1160.76038
[13] Yong, W.-A., An Onsager-like relation for the lattice Boltzmann method, Comput. Math. Appl., 58, 5, 862-866, (2009) · Zbl 1189.76420
[14] Bernsdorf, J.; Durst, F.; Schäfer, M., Comparison of cellular automata and finite volume techniques for simulation of incompressible flows in complex geometries, Internat. J. Numer. Methods Fluids, 29, 3, 251-264, (1999) · Zbl 0940.76067
[15] Buick, J.; Greated, C.; Campbell, D., Lattice bgk simulation of sound waves, Europhys. Lett., 43, 3, 235, (1998)
[16] Dellar, P. J., Bulk and shear viscosities in lattice Boltzmann equations, Phys. Rev. E, 64, 3, (2001)
[17] B. Crouse, D. Freed, G. Balasubramanian, S. Senthooran, P.-T. Lew, L. Mongeau, Fundamental aeroacoustic capabilities of the lattice-boltzmann method. 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), 2571, 2006.
[18] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions, Phys. Rev. E, 68, 3, (2003)
[19] Marie, S.; Ricot, D.; Sagaut, P., Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, J. Comput. Phys., 228, 4, 1056-1070, (2009) · Zbl 1330.76115
[20] Hasert, M.; Bernsdorf, J.; Roller, S., Towards aeroacoustic sound generation by flow through porous media, Phil. Trans. R. Soc. A, 369, 1945, 2467-2475, (2011) · Zbl 1223.76074
[21] Bardos, C.; Golse, F.; Levermore, C. D., The acoustic limit for the Boltzmann equation, Arch. Ration. Mech. Anal., 153, 3, 177-204, (2000) · Zbl 0973.76075
[22] Mankbadi, R.; Hixon, R.; Shih, S.; Povinelli, L., Use of linearized Euler equations for supersonic jet noise prediction, AIAA J., 36, 2, 140-147, (1998) · Zbl 0905.76075
[23] Bailly, C.; Juvé, D., Numerical solution of acoustic propagation problems using linearized Euler equations, AIAA J., 38, 1, 22-29, (2000)
[24] Bogey, C.; Bailly, C.; Juvé, D., Computation of flow noise using source terms in linearized euler’s equations, AIAA J., 40, 2, 235-243, (2002)
[25] Roller, S.; Schwartzkopff, T.; Fortenbach, R.; Dumbser, M.; Munz, C.-D., Calculation of low Mach number acoustics: a comparison of mpv, eif and linearized Euler equations, ESAIM Math. Model. Numer. Anal., 39, 03, 561-576, (2005) · Zbl 1130.76072
[26] Cercignani, C., (The Boltzmann Equation and Its Applications, Applied Mathematical Sciences Series, (1988), Springer) · Zbl 0646.76001
[27] Lee, T.; Lin, C.-L., A characteristic Galerkin method for discrete Boltzmann equation, J. Comput. Phys., 171, 1, 336-356, (2001) · Zbl 1017.76043
[28] Succi, S., (The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Numerical Mathematics and Scientific Computation, (2001), Oxford University Press USA) · Zbl 0990.76001
[29] Jo, J. C.; Rhoh, K. W.; Kwon, Y. W., Finite element based formulation of the lattice Boltzmann equation, Nucl. Eng. Technol., 41, 5, 649-654, (2009)
[30] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 3, 511, (1954) · Zbl 0055.23609
[31] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics, vol. 16, (1999), Springer
[32] Kataoka, T.; Tsutahara, M., Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 69, 3, (2004)
[33] Dellar, P. J., Two routes from the Boltzmann equation to compressible flow of polyatomic gases, Prog. Comput. Fluid Dyn., 8, 1, 84-96, (2008) · Zbl 1187.76725
[34] LeVeque, R. J., Finite difference methods for ordinary and partial differential equations, (2007), Society for Industrial and Applied Mathematics · Zbl 1127.65080
[35] L.N. Trefethen, Finite difference and spectral methods for ordinary and partial differential equations, 1996. http://people.maths.ox.ac.uk/trefethen/4all.pdf.
[36] Bauer, F. L.; Fike, C. T., Norms and exclusion theorems, Numer. Math., 2, 1, 137-141, (1960) · Zbl 0101.25503
[37] Clawpack Development Team. Clawpack software, 2013. Version 5.0.
[38] LeVeque, R. J., Wave propagation algorithms for multidimensional hyperbolic systems, J. Comput. Phys., 131, 2, 327-353, (1997) · Zbl 0872.76075
[39] Langseth, J. O.; LeVeque, R. J., A wave-propagation method for three-dimensional hyperbolic conservation laws, J. Comput. Phys., 165, 126-166, (2000) · Zbl 0967.65095
[40] K.T. Mandli, D.I.e. Ketcheson, PyClaw software, 2011. Version 5.0.
[41] Ketcheson, D. I.; Mandli, K. T.; Ahmadia, A. J.; Alghamdi, A.; Quezada de Luna, M.; Parsani, M.; Knepley, M. G.; Emmett, M., Pyclaw: accessible, extensible, scalable tools for wave propagation problems, SIAM J. Sci. Comput., 34, 4, C210-C231, (2012) · Zbl 1253.65220
[42] S. Balay, M.F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, H. Zhang, PETSc web page, 2014. http://www.mcs.anl.gov/petsc.
[43] Balay, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zhang, H., Petsc users manual. technical report ANL-95/11 — revision 3.4, (2013), Argonne National Laboratory
[44] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing, (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.