×

Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. (English) Zbl 1364.35230

Summary: We study weak solutions of the homogeneous Boltzmann equation for Maxwellian molecules with a logarithmic singularity of the collision kernel for grazing collisions. Even though in this situation the Boltzmann operator enjoys only a very weak coercivity estimate, it still leads to strong smoothing of weak solutions in accordance to the smoothing expected by an analogy with a logarithmic heat equation.

MSC:

35Q20 Boltzmann equations
35B65 Smoothness and regularity of solutions to PDEs
82B40 Kinetic theory of gases in equilibrium statistical mechanics
35D30 Weak solutions to PDEs

References:

[1] R. Alexandre, Entropy dissipation and long-range interactions,, Archive for Rational Mechanics and Analysis, 152, 327 (2000) · Zbl 0968.76076 · doi:10.1007/s002050000083
[2] L. Arkeryd, On the Boltzmann equation. I: Existence,, Archive for Rational Mechanics and Analysis, 45, 1 (1972) · Zbl 0245.76059 · doi:10.1007/BF00253392
[3] L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation,, Archive for Rational Mechanics and Analysis, 77, 11 (1981) · Zbl 0547.76085 · doi:10.1007/BF00280403
[4] J.-M. Barbaroux, Gevrey smoothing for weak solutions of the fully nonlinear homogeneous Boltzmann and Kac equations without cutoff for Maxwellian molecules,, to appear in Archive for Rational Mechanics and Analysis · Zbl 1382.35177 · doi:10.1007/s00205-017-1101-8
[5] C. Cercignani, <em>The Boltzmann Equation and Its Applications</em>,, Applied Mathematical Sciences, 67 (1988) · Zbl 0646.76001 · doi:10.1007/978-1-4612-1039-9
[6] P. J. Cohen, A simple proof of the Denjoy-Carleman Theorem,, The American Mathematical Monthly, 75, 26 (1968) · Zbl 0153.08804 · doi:10.2307/2315100
[7] L. Desvillettes, Boltzmann’s kernel and the spatially homogeneous Boltzmann equation,, Rivista di Matematica della Università di Parma (6), 4*, 1 (2001) · Zbl 1078.76059
[8] L. Desvillettes, Propagation of Gevrey regularity for solutions of the Boltzmann equation for Maxwellian molecules,, Transactions of the American Mathematical Society, 361, 1731 (2009) · Zbl 1159.76044 · doi:10.1090/S0002-9947-08-04574-1
[9] S. G. Krantz, <em>A Primer of Real Analytic Functions</em>, \(2^{nd}\) edition,, Birkhäuser Advanced Texts: Basler Lehrbücher (2002) · Zbl 1015.26030 · doi:10.1007/978-0-8176-8134-0
[10] S. Mischler, On the spatially homogeneous Boltzmann equation,, Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 16, 467 (1999) · Zbl 0946.35075 · doi:10.1016/S0294-1449(99)80025-0
[11] Y. Morimoto, Hypoellipticity for infinitely degenerate elliptic operators,, Osaka Journal of Mathematics, 24, 13 (1987) · Zbl 0658.35039
[12] Y. Morimoto, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff,, Discrete and Continuous Dynamical Systems, 24, 187 (2009) · Zbl 1169.35315 · doi:10.3934/dcds.2009.24.187
[13] W. Rudin, <em>Real and Complex Analysis</em>, \(3^{rd}\) edition,, McGraw-Hill Book Co. (1987) · Zbl 0925.00005
[14] G. Toscani, Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas,, Journal of Statistical Physics, 94, 619 (1999) · Zbl 0958.82044 · doi:10.1023/A:1004589506756
[15] C. Villani, On a new class of weak solutions to the spatially homogeneous Boltzmann and Landau equations,, Archive for Rational Mechanics and Analysis, 143, 273 (1998) · Zbl 0912.45011 · doi:10.1007/s002050050106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.