zbMATH — the first resource for mathematics

Mating, paper folding, and an endomorphism of \(\mathbb {PC}^2\). (English) Zbl 1408.37082
Summary: We are studying topological properties of the Julia set of the map \(F(z, p)=\left(\left(\frac{2z}{p+1}-1\right)^2,\left(\frac{p-1}{p+1}\right)^2\right)\) of the complex projective plane \(\mathbb{PC}^2\) to itself. We show a relation between this rational function and an uncountable family of “paper folding” plane filling curves.

37F15 Expanding holomorphic maps; hyperbolicity; structural stability of holomorphic dynamical systems
37F20 Combinatorics and topology in relation with holomorphic dynamical systems
37F50 Small divisors, rotation domains and linearization in holomorphic dynamics
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
GAP; AutomGrp; automata; FR
Full Text: DOI
[1] barth:GAP Laurent Bartholdi, FR, GAP package functionally recursive groups. !http://laurentbartholdi.github.io/fr/chap0.html!,2014.
[2] Bartholdi, Laurent; Nekrashevych, Volodymyr, Thurston equivalence of topological polynomials, Acta Math., 197, 1, 1-51 (2006) · Zbl 1176.37020
[3] Bartholdi, Laurent; Nekrashevych, Volodymyr V., Iterated monodromy groups of quadratic polynomials. I, Groups Geom. Dyn., 2, 3, 309-336 (2008) · Zbl 1153.37379
[4] Buff, Xavier; Epstein, Adam; Koch, Sarah; Pilgrim, Kevin, On Thurston’s pullback map. Complex dynamics, 561-583 (2009), A K Peters, Wellesley, MA · Zbl 1180.37065
[5] Buff, Xavier; Epstein, Adam L.; Koch, Sarah, Twisted matings and equipotential gluings, Ann. Fac. Sci. Toulouse Math. (6), 21, 5, 995-1031 (2012) · Zbl 1408.37084
[6] Davis, Chandler; Knuth, Donald E., Number representations and dragon curves-I, J. Recreational Math., 3, 2, 66-81 (1970)
[7] Forn{\ae }ss, John Erik; Sibony, Nessim, Complex dynamics in higher dimension. Several complex variables, Berkeley, CA, 1995-1996, Math. Sci. Res. Inst. Publ. 37, 273-296 (1999), Cambridge Univ. Press, Cambridge · Zbl 0999.37031
[8] Knuth, Donald E., The art of computer programming, \textup{Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing}, xxii+634 pp. (1 table on lining papers) pp. (1975), Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam
[9] Kobayashi, Shoshichi, Hyperbolic complex spaces, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 318, xiv+471 pp. (1998), Springer-Verlag, Berlin · Zbl 0917.32019
[10] Koch, Sarah, Teichm\"uller theory and critically finite endomorphisms, Adv. Math., 248, 573-617 (2013) · Zbl 1310.32016
[11] Mandelbrot, Benoit B., The fractal geometry of nature, v+460 pp. (1982), Schriftenreihe f\"ur den Referenten. [Series for the Referee], W. H. Freeman and Co., San Francisco, Calif. · Zbl 0504.28001
[12] Milnor, John, Pasting together Julia sets: a worked out example of mating, Experiment. Math., 13, 1, 55-92 (2004) · Zbl 1115.37051
[13] muntyansavchuk:gap Y. Muntyan and D. Savchuk. AutomGrp GAP package for computation in groups and semigroups generated by automata. !http://www.gap-system.org/Packages/automgrp.html!,2014.
[14] Nekrashevych, Volodymyr, Self-similar groups, Mathematical Surveys and Monographs 117, xii+231 pp. (2005), American Mathematical Society, Providence, RI · Zbl 1087.20032
[15] Nekrashevych, Volodymyr, A minimal Cantor set in the space of 3-generated groups, Geom. Dedicata, 124, 153-190 (2007) · Zbl 1188.20039
[16] Nekrashevych, Volodymyr, Symbolic dynamics and self-similar groups. Holomorphic dynamics and renormalization, Fields Inst. Commun. 53, 25-73 (2008), Amer. Math. Soc., Providence, RI · Zbl 1166.37005
[17] Nekrashevych, Volodymyr, A group of non-uniform exponential growth locally isomorphic to \({\rm IMG}(z^2+i)\), Trans. Amer. Math. Soc., 362, 1, 389-398 (2010) · Zbl 1275.20049
[18] Nekrashevych, Volodymyr, Iterated monodromy groups. Groups St Andrews 2009 in Bath. Volume 1, London Math. Soc. Lecture Note Ser. 387, 41-93 (2011), Cambridge Univ. Press, Cambridge · Zbl 1235.37016
[19] Nekrashevych, Volodymyr, The Julia set of a post-critically finite endomorphism of \(\mathbb{P}\mathbb{C}^2\), J. Mod. Dyn., 6, 3, 327-375 (2012) · Zbl 1339.37037
[20] Nekrashevych, Volodymyr, Combinatorial models of expanding dynamical systems, Ergodic Theory Dynam. Systems, 34, 3, 938-985 (2014) · Zbl 1350.37034
[21] Nekrashevych, Volodymyr, An uncountable family of 3-generated groups with isomorphic profinite completions, Internat. J. Algebra Comput., 24, 1, 33-46 (2014) · Zbl 1297.20029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.