Isaacs, I. M.; Navarro, Gabriel; Olsson, Jørn B.; Tiep, Pham Huu Character restrictions and multiplicities in symmetric groups. (English) Zbl 1423.20006 J. Algebra 478, 271-282 (2017). Summary: We give natural correspondences of odd-degree characters of the symmetric groups and some of their subgroups, which can be described easily by restriction of characters, degrees and multiplicities. Cited in 1 ReviewCited in 6 Documents MSC: 20C15 Ordinary representations and characters 20C30 Representations of finite symmetric groups Keywords:restriction; multiplicities; symmetric groups; odd degree characters; natural correspondences PDF BibTeX XML Cite \textit{I. M. Isaacs} et al., J. Algebra 478, 271--282 (2017; Zbl 1423.20006) Full Text: DOI References: [1] Ayyer, A.; Prasad, A.; Spallone, S., Odd partitions in Young’s lattice, Sémin. Lothar. Comb., 75, (2016), Article B75g · Zbl 1339.05014 [2] Giannelli, E., Characters of odd degree of symmetric groups · Zbl 1434.20007 [3] Giannelli, E.; Kleshchev, A.; Navarro, G.; Tiep, Pham Huu, Restriction of odd degree characters and natural correspondences, Int. Math. Res. Not., (2017), in press · Zbl 1404.20006 [4] James, G. D., The representation theory of the symmetric groups, (1978), Springer-Verlag · Zbl 0393.20009 [5] James, G.; Kerber, A., The representation theory of the symmetric group, Encyclopedia Math. Appl., vol. 16, (1981), Addison-Wesley Publishing Co. Reading, MA [6] Macdonald, I. G., On the degrees of the irreducible representations of symmetric groups, Bull. Lond. Math. Soc., 3, 189-192, (1971) · Zbl 0219.20008 [7] Olsson, J. B., Mckay numbers and heights of characters, Math. Scand., 38, 25-42, (1976) · Zbl 0327.20005 [8] Olsson, J. B., Combinatorics and representations of finite groups, vol. 20, (1993), Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen, Universität Essen This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.