×

zbMATH — the first resource for mathematics

Cluster algebras of type \(D_4\), tropical planes, and the positive tropical Grassmannian. (English) Zbl 1401.13063
Summary: We show that the number of combinatorial types of clusters of type \(D_4\) modulo reflection-rotation is exactly equal to the number of combinatorial types of generic tropical planes in \(\mathbb {TP}^5\). This follows from a result of Sturmfels and Speyer which classifies these generic tropical planes into seven combinatorial classes using a detailed study of the tropical Grassmannian \({{\mathrm{Gr}}}(3,6)\). Speyer and Williams show that the positive part \({{\mathrm{Gr}}}^+(3,6)\) of this tropical Grassmannian is combinatorially equivalent to a small coarsening of the cluster fan of type \(D_4\). We provide a structural bijection between the rays of \({{\mathrm{Gr}}}^+(3,6)\) and the almost positive roots of type \(D_4\) which makes this connection more precise. This bijection allows us to use the pseudotriangulations model of the cluster algebra of type \(D_4\) to describe the equivalence of “positive” generic tropical planes in \(\mathbb {TP}^5\), giving a combinatorial model which characterizes the combinatorial types of generic tropical planes using automorphisms of pseudotriangulations of the octogon.

MSC:
13F60 Cluster algebras
14T05 Tropical geometry (MSC2010)
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
52C30 Planar arrangements of lines and pseudolines (aspects of discrete geometry)
Software:
polymake; SageMath
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ceballos, C., Labbé, J.-P., Stump, C.: Subword complexes, cluster complexes, and generalized multi-associahedra. J. Algebr. Combin. 39(1), 17-51 (2014) · Zbl 1286.05180
[2] Ceballos, C., Pilaud, V.: Denominator vectors and compatibility degrees in cluster algebras of finite type. Trans. Am. Math. Soc. 367(2), 1421-1439 (2015a) · Zbl 1350.13020
[3] Ceballos, C., Pilaud, V.: Cluster algebras of type D: pseudotriangulations approach. Electron. J. Combin. 22(4), pp. 27 (2015b) · Zbl 1350.13021
[4] Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201(1), 83-146 (2008) · Zbl 1263.13023
[5] Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497-529 (2002) · Zbl 1021.16017
[6] Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. Ann. Math. (2), 158(3), 977-1018 (2003a) · Zbl 1057.52003
[7] Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63-121 (2003b) · Zbl 1054.17024
[8] Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1-52 (2005) · Zbl 1135.16013
[9] Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients. Compos. Math. 143(1), 112-164 (2007) · Zbl 1127.16023
[10] Gawrilow, E., Joswig, M.J.: Polymake: a framework for analyzing convex polytopes. Kalai, G., Ziegler, G.M., editors. Polytopes-Combinatorics and Computation, pp. 43-74. Birkhäuser,Basel (2000) · Zbl 0960.68182
[11] Herrmann, S., Joswig, M., Speyer, D.: Dressians, tropical Grassmannians, and their rays. Forum Mathematicum 26(6), 1853-1881 (2012) · Zbl 1308.14068
[12] Herrmann, S., Jensen, A., Joswig, M., Sturmfels, B.: How to draw tropical planes. Electron. J. Combin. 16(2), pp. 26 (2009) · Zbl 1195.14080
[13] Postnikov, A.: Total positivity, Grassmannians, and networks, pp. 76 (2006) (preprint). arXiv:math/0609764
[14] Speyer, D., Williams, L.: The tropical totally positive Grassmannian. J. Algebraic Combin. 22(2), 189-210 (2005) · Zbl 1094.14048
[15] Speyer, D.E.: Tropical linear spaces. SIAM J. Discrete Math. 22(4), 1527-1558 (2008). doi:10.1137/080716219 · Zbl 1191.14076
[16] Speyer, D.E.: A matroid invariant via the \(K\)-theory of the Grassmannian. Adv. Math. 221(3), 882-913 (2009). doi:10.1016/j.aim.2009.01.010 · Zbl 1222.14131
[17] Speyer, D., Sturmfels, B.: The tropical Grassmannian. Adv. Geom. 4(3), 389-411 (2004) · Zbl 1065.14071
[18] Stanley, R.P., Pitman, J.: A polytope related to empirical distributions, plane trees, parking functions, and the associahedron. Discrete Comput. Geom. 27(4), 603-634 (2002) · Zbl 1012.52019
[19] Stein, W.A. et al.: Sage Mathematics Software (Version 6.8). The Sage Development Team, USA (2015). http://www.sagemath.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.