×

zbMATH — the first resource for mathematics

From description-logic programs to multi-context systems. (English) Zbl 1362.68272
Summary: The combination of logic program-style rules with other reasoning systems has been a fertile topic of research in the last years, with the proposal of several different systems that achieve this goal. In this work, we look at two of these systems, dl-programs and multi-context systems, which address different aspects of this combination, and include different, incomparable programming constructs. We prove that every dl-program can be transformed into a multi-context system in such a way that the different semantics for each paradigm are naturally related. As a consequence, constructions developed for dl-programs can be automatically ported to multi-context systems. In particular, we show how to model default rules over ontologies with the usual semantics.
MSC:
68T30 Knowledge representation
68N17 Logic programming
68Q55 Semantics in the theory of computing
68T27 Logic in artificial intelligence
Software:
Racer; DLVHEX
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Antoniou, G., A tutorial on default logics, ACM Comput. Surv., 31, 3, 337-359, (1999)
[2] (Baader, F.; Calvanese, D.; McGuinness, D. L.; Nardi, D.; Patel-Schneider, P. F., The Description Logic Handbook: Theory, Implementation, and Applications, (2007), Cambridge University Press) · Zbl 1132.68055
[3] Baader, F.; Hollunder, B., Embedding defaults into terminological knowledge representation formalisms, J. Autom. Reason., 14, 1, 149-180, (1995)
[4] Brewka, G.; Eiter, T., Equilibria in heterogeneous nonmonotonic multi-context systems, (AAAI2007, (2007), AAAI Press), 385-390
[5] Brewka, G.; Eiter, T.; Fink, M.; Weinzierl, A., Managed multi-context systems, (Walsh, T., IJCAI, (2011), IJCAI/AAAI), 786-791
[6] Brewka, G.; Niemel, I.; Truszczyński, M., Nonmonotonic reasoning, (van Harmelen, F.; Lifschitz, V.; Porter, B., Handbook of Knowledge Representation, (2008), Elsevier), 239-284, chapter 6
[7] Brewka, G.; Roelofsen, F.; Serafini, L., Contextual default reasoning, (Veloso, M. M., IJCAI2007, (2007)), 268-273
[8] Bruijn, J.; Eiter, T.; Tompits, H., Embedding approaches to combining rules and ontologies into autoepistemic logic, (Brewka, G.; Lang, J., KR2008, (2008), AAAI Press), 485-495
[9] Cruz-Filipe, L.; Gaspar, G.; Nunes, I., Information flow within relational multi-context systems, (Janowicz, K.; Schlobach, S.; Lambrix, P.; Hyvönen, E., EKAW 2014, LNAI, vol. 8876, (2014), Springer), 97-108
[10] Cruz-Filipe, L.; Gaspar, G.; Nunes, I., Design patterns for description-logic programs, (Fred, A.; Dietz, J. L.G.; Liu, K.; Filipe, J., Knowledge Discovery, Knowledge Engineering and Knowledge Management, CCIS, vol. 454, (2015), Springer), 199-214
[11] Cruz-Filipe, L.; Henriques, R.; Nunes, I., Description logics, rules and multi-context systems, (McMillan, K.; Middeldorp, A.; Voronkov, A., LPAR-19, LNCS, vol. 8312, (December 2013), Springer), 243-257 · Zbl 1362.68273
[12] Dantsin, E.; Eiter, T.; Gottlob, G.; Voronkov, A., Complexity and expressive power of logic programming, ACM Comput. Surv., 33, 3, 374-425, (2001)
[13] Dao-Tran, M.; Eiter, T.; Fink, M.; Krennwallner, T., Dynamic distributed nonmonotonic multi-context systems, (Brewka, G.; Marek, V.; Truszczynski, M., Nonmonotonic Reasoning, Essays Celebrating Its 30th Anniversary, Studies in Logic, vol. 31, (2011), College Publications) · Zbl 1259.68188
[14] Donini, F. M.; Lenzerini, M.; Nardi, D.; Schaerf, A., AL-log: integrating Datalog and description logics, J. Intell. Inf. Syst., 10, 3, 227-252, (1998)
[15] Eiter, T.; Fink, M.; Ianni, G.; Schüller, P., Towards a policy language for managing inconsistency in multi-context systems, (Mileo, A.; Fink, M., Workshop on Logic-Based Interpretation of Context: Modelling and Applications, (2011)), 23-35
[16] Eiter, T.; Ianni, G.; Krenwallner, T.; Polleres, A., Rules and ontologies for the semantic web, (Reasoning Web, LNCS, vol. 5224, (2008), Springer), 1-53
[17] Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R., Well-founded semantics for description logic programs in the semantic web, ACM Trans. Comput. Log., 12, 2, (2011), Article Nr. 11 · Zbl 1351.68275
[18] Eiter, T.; Ianni, G.; Lukasiewicz, T.; Schindlauer, R.; Tompits, H., Combining answer set programming with description logics for the semantic web, Artif. Intell., 172, 12-13, 1495-1539, (2008) · Zbl 1183.68595
[19] Eiter, T.; Ianni, G.; Polleres, A.; Schindlauer, R.; Tompits, H., Reasoning with rules and ontologies, (Barahona, P.; Bry, F.; Franconi, E.; Henze, N.; Sattler, U., Reasoning Web, Second International Summer School 2006, Lisbon, Portugal, September 4-8, 2006, Tutorial Lectures, LNCS, vol. 4126, (September 2006), Springer), 93-127
[20] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, A uniform integration of higher-order reasoning and external evaluations in answer-set programming, in: Kaelbling and Saffiotti [30], pp. 90-96.
[21] Eiter, Thomas; Ianni, Giovambattista; Schindlauer, Roman; Tompits, Hans, Dlvhex: a prover for semantic-web reasoning under the answer-set semantics, (Web Intelligence, (2006), IEEE Computer Society), 1073-1074
[22] Fink, M.; Ghionna, L.; Weinzierl, A., Relational information exchange and aggregation in multi-context systems, (Delgrande, J. P.; Faber, W., LPNMR, LNCS, vol. 6645, (2011), Springer), 120-133 · Zbl 1327.68271
[23] Fink, M.; Pearce, D., A logical semantics for description logic programs, (Janhunen, T.; Niemelä, I., JELIA 2010, LNCS, vol. 6341, (2010), Springer), 156-168 · Zbl 1306.68007
[24] Giunchiglia, F.; Serafini, L., Multilanguage hierarchical logics, or: how we can do without modal logics, Artif. Intell., 65, 1, 29-70, (1994) · Zbl 0787.68093
[25] Gonçalves, R.; Knorr, M.; Leite, J., Evolving bridge rules in evolving multi-context systems, (Bulling, N.; van der Torre, L. W.N.; Villata, S.; Jamroga, W.; Vasconcelos, W. W., CLIMA, LNCS, vol. 8624, (2014), Springer), 52-69 · Zbl 1425.68399
[26] Gonçalves, R.; Knorr, M.; Leite, J., Evolving multi-context systems, (Schaub, T.; Friedrich, G.; O’Sullivan, B., PAIS, Frontiers in Artificial Intelligence and Applications, vol. 263, (2014), IOS Press), 375-380 · Zbl 1366.68305
[27] Haarslev, V.; Möller, R., RACER system description, (Goré, R.; Leitsch, A.; Nipkow, T., IJCAR 2001, LNCS, vol. 2083, (2001), Springer), 701-706 · Zbl 0988.68599
[28] Heymans, S.; Eiter, T.; Xiao, G., Tractable reasoning with DL-programs over Datalog-rewritable description logics, (Coelho, H.; Studer, R.; Wooldridge, M., ECAI2010, Frontiers in Artificial Intelligence and Applications, vol. 215, (2010), IOS Press), 35-40 · Zbl 1211.68402
[29] Homola, M.; Knorr, M.; Leite, J.; Slota, M., MKNF knowledge bases in multi-context systems, (Fisher, M.; van der Torre, L.; Dastani, M.; Governatori, G., CLIMA, LNCS, vol. 7486, (2012), Springer), 146-162 · Zbl 1361.68250
[30] (Kaelbling, L. P.; Saffiotti, A., Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, IJCAI-05, Edinburgh, Scotland, UK, July 30-August 5, 2005, (July 2005), Professional Book Center)
[31] McCarthy, J., Notes on formalizing context, (Bajcsy, R., IJCAI1993, (1993), Morgan Kaufmann), 555-562
[32] Motik, B.; Rosati, R., Reconciling description logics and rules, J. ACM, 57, (June 2010), Article Nr. 30
[33] Reiter, R., A logic for default reasoning, Artif. Intell., 13, 81-132, (1980) · Zbl 0435.68069
[34] F. Roelofsen, L. Serafini, Minimal and absent information in contexts, in: Kaelbling and Saffiotti [30], pp. 558-563.
[35] Rosati, R., DL+log: tight integration of description logics and disjunctive Datalog, (Doherty, P.; Mylopoulos, J.; Welty, C. A., KR2006, (2006), AAAI Press), 67-78
[36] Wang, Y.; You, J.; Yuan, L.; Shen, Y.; Eiter, T., Embedding description logic programs into default logic, (2011), CoRR
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.