×

A review of the numerical investigation on the scattering of Gaussian beam by complex particles. (English) Zbl 1358.78001

Summary: The study of light scattering by various particles is an active and important subject of research with myriad practical applications. During the years the scattering of plane wave by various particles has been investigated extensively. In recent years, with the development of laser sources and the tremendous expansion of their application, there has been a growing interest in the study of light scattering by various particles illuminated by a focused Gaussian beam. Since the analytical methods are only suitable for the analysis of Gaussian beam scattering by some regular particles, for complex particles with arbitrary shape and structure, one has to resort to the numerical methods. In this article, we review the recent numerical investigation on the scattering of Gaussian beam by systems of complex particles, including arbitrarily shaped conducting particles, dielectric particles, composite particles with inclusions, as well as random discrete particles and fractal soot aggregates. The essential formulations of the proposed numerical methods are outlined and the numerical results for some complex particles are also presented. This review is expected to provide useful help for the study of the interaction between the laser beams and the complex particles.

MSC:

78-02 Research exposition (monographs, survey articles) pertaining to optics and electromagnetic theory
78A40 Waves and radiation in optics and electromagnetic theory
78A45 Diffraction, scattering
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory

Software:

NFM-DS; ADDA; inclusion
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] van de Hulst, H. C., Light scattering by small particles, (1957), Dover Publications New York
[2] Newton, R. G., Scattering theory of waves and particles, (1982), Springer Berlin · Zbl 0496.47011
[3] Bohren, C. F.; Huffman, D. R., Absorption and scattering of light by small particles, (1983), Wiley New York
[4] Mishchenko, M. I.; Hovenier, J. W.; Travis, L. D., Light scattering by nonspherical particles: theory, measurements, and applications, (2000), Academic Press San Diego
[5] Mishchenko, M. I.; Travis, L. D.; Lacis, A. A., Multiple scattering of light by particles: radiative transfer and coherent backscattering, (2002), Cambridge University Press Cambridge
[6] Mishchenko, M. I.; Travis, L. D.; Lacis, A. A., Scattering, absorption, and emission of light by small particles, (2002), Cambridge University Press Cambridge
[7] Doicu, A.; Wriedt, T.; Eremin, Y. A., Light scattering by systems of particles, (2006), Springer Berlin · Zbl 1163.78002
[8] Borghese, F., Scattering from model nonspherical particles: theory and applications to environmental physics, (2007), Springer Berlin
[9] Koknanovsky, A. A., Aerosol optics: light absorption and scattering by particles in the atmosphere, (2008), Springer Berlin
[10] Rother, T., Electromagnetic wave scattering on nonspherical particles: basic methodology and simulations, (2009), Springer Berlin
[11] Gouesbet, G.; Gréhan, G., Generalized Lorenz-mie theories, (2011), Springer Berlin · Zbl 1248.78002
[12] Mackowski, D. W.; Mishchenko, M. I., Direct simulation of multiple scattering by discrete random media illuminated by Gaussian beams, Phys. Rev. A, 83, 013804, (2011)
[13] Yurkin, M. A.; Hoekstra, A. G., The discrete-dipole-approximation code ADDA: capabilities and known limitations, J. Quant. Spectrosc. Radiat. Transfer, 112, 2234-2247, (2011)
[14] Cui, Z. W.; Han, Y. P.; Zhang, H. Y., Scattering of an arbitrarily incident focused Gaussian beam by arbitrarily shaped dielectric particles, J. Opt. Soc. Amer. B, 28, 2625-2632, (2011)
[15] Cui, Z. W.; Han, Y. P.; Wang, J. J.; Zhao, W. J., Scattering of Gaussian beam by arbitrarily shaped inhomogeneous particles, J. Quant. Spectrosc. Radiat. Transfer, 113, 480-488, (2012)
[16] Han, Y. P.; Cui, Z. W.; Zhao, W. J., Scattering of Gaussian beam by arbitrarily shaped particles with multiple internal inclusions, Opt. Express, 20, 718-731, (2012)
[17] Han, Y. P.; Cui, Z. W.; Gouesbet, G., Numerical simulation of Gaussian beam scattering by complex particles of arbitrary shape and structure, J. Quant. Spectrosc. Radiat. Transfer, 113, 1719-1727, (2012)
[18] Cui, Z. W.; Han, Y. P.; Xu, Q., Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams, J. Opt. Soc. Amer. A, 28, 2200-2208, (2011)
[19] Cui, Z. W.; Han, Y. P.; Li, C. Y., Characterization of the light scattering by ensembles of randomly distributed soot aggregates, J. Quant. Spectrosc. Radiat. Transfer, 112, 2722-2732, (2012)
[20] Cui, Z. W.; Han, Y. P.; Zhao, W. J., Scattering of arbitrarily incident Gaussian beam by fractal soot aggregates, J. Opt. A, 14, 035703, (2012)
[21] Kogelink, H., On the propagation of Gaussian beams of light through lenslike media including these with a loss or gain variation, Appl. Opt., 4, 1562-1569, (1965)
[22] Lax, M.; Louisell, W. H.; Mcknight, W. B., From Maxwell to paraxial wave optics, Phys. Rev. A, 11, 1365-1370, (1975)
[23] Davis, L. W., Theory of electromagnetic beams, Phys. Rev. A, 19, 1177-1179, (1979)
[24] Agrawal, G. P.; Pattanayak, D. N., Gaussian beam propagation beyond the paraxial approximation, J. Opt. Soc. Amer., 69, 575-578, (1979)
[25] Couture, M.; Belanger, P. A., From Gaussian beam to complex source point spherical wave, Phys. Rev. A, 24, 355-359, (1984)
[26] Barton, J. P.; Alexander, D. R., Fifth-order corrected electromagnetic fields components for a fundamental Gaussian beam, J. Appl. Phys., 66, 2800-2802, (1989)
[27] Wang, G. Z.; Webb, J. F., Calculation of electromagnetic field components for a fundamental Gaussian beam, Phys. Rev. E, 72, 046501, (2005)
[28] Han, Y. P.; Zhang, H. Y.; Han, G. X., The expansion coefficients of arbitrary shaped beam in oblique illumination, Opt. Express., 15, 735-746, (2007)
[29] Edmonds, A. R., Angular momentum in quantum mechanics, (1957), Princeton University Press Princeton · Zbl 0079.42204
[30] Han, G. X.; Han, Y. P.; Liu, J. Y.; Zhang, Y., Scattering of an eccentric sphere arbitrarily located in a shaped beam, J. Opt. Soc. Amer. B, 25, 2064-2072, (2008)
[31] Gouesbet, G.; Wang, J. J.; Han, Y. P., Transformations of spherical beam shape coefficients in generalized Lorenz-mie theories through rotations of coordinate systems. III. special Euler angles, Opt. Commun., 283, 3235-3243, (2010)
[32] Knepp, D. L.; Goldhirsh, J., Numerical analysis of electromagnetic radiation properties of smooth conducting bodies of arbitrary shape, IEEE Trans. Antennas Propag., 20, 383-388, (1972)
[33] Poggio, A. J.; Miller, E. K., Integral equation solutions of three dimensional scattering problems, (Mittra, R., Computer Techniques for Electromagnetics, (1973), Pergamon Press Oxford), Chap. 4
[34] Mautz, J. R.; Harrington, R. F., \(H\)-field, \(E\)-field, and combined field solutions for conducting bodies of revolution, AEÜ, 32, 157-164, (1978)
[35] Rao, S. M.; Wilton, D. R.; Glisson, A. W., Electromagnetic scattering by surfaces of arbitrary shape, IEEE Trans. Antennas Propag., 30, 409-418, (1982)
[36] Engheta, N.; Murphy, W. D.; Rokhlin, V.; Vassiliou, M. S., The fast multipole method (FMM) for electromagnetic scattering problems, IEEE Antennas Propag. Mag., 40, 634-641, (1992) · Zbl 0947.78614
[37] Coifman, R.; Rokhlin, V.; Wandzura, S., The fast multipole method for the wave equation: a Pedestrian prescription, IEEE Antennas Propag. Mag., 35, 7-12, (1993)
[38] Lu, C. C.; Chew, W. C., Fast algorithm for solving hybrid integral equations, IEEE Proc. H, Microw. Antennas Propag., 140, 455-460, (1993)
[39] Song, J. M.; Chew, W. C., Fast multipole method solution using parametric geometry, Microw. Opt. Technol. Lett., 7, 760-765, (1994)
[40] Song, J. M.; Chew, W. C., Fast multipole method solution of three dimensional integral equation, IEEE Antennas Propag. Soc. Int. Symp., 3, 1528-1531, (1995)
[41] Song, J. M.; Chew, W. C., Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering, Microw. Opt. Technol. Lett., 10, 14-19, (1995)
[42] Song, J. M.; Lu, C. C.; Chew, W. C., Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects, IEEE Trans. Antennas Propag., 45, 1488-1493, (1997)
[43] Harrington, R. F., Field computation by moment methods, (1968), Macmillan New York
[44] Gibson, W. C., The method of moments in electromagnrtics, (2008), Chapman &Hall/ CRC Boca Raton
[45] Chew, W. C.; Jin, J. M.; Michielssen, E.; Song, J. M., Fast and efficient algorithms in computational electromagnetics, (2001), Artech House Boston
[46] Tsai, W. C.; Pogorzelski, R. J., Eigenfunction solution of the scattering of beam radiation fields by spherical objects, J. Opt. Soc. Amer., 65, 1457-1463, (1975)
[47] Tam, W. G.; Corriveau, R., Scattering of electromagnetic beams by spherical objects, J. Opt. Soc. Amer., 68, 763-767, (1975)
[48] Kim, J. S.; Lee, S. S., Scattering of laser beams and the optical potential well for a homogeneous sphere, J. Opt. Soc. Amer., 73, 303-312, (1983)
[49] Gréhan, G.; Maheu, B.; Gouesbet, G., Scattering of laser beams by mie scatter centers: numerical results using a localized approximation, Appl. Opt., 25, 3539-3548, (1986)
[50] Gouesbet, G.; Maheu, B.; Gréhan, G., Light scattering from a sphere arbitrarily located in a Gaussian beam, using a bromwich formulation, J. Opt. Soc. Amer. A, 5, 1427-1443, (1988)
[51] Chevaillier, J. P.; Fabre, J.; Gréhan, G.; Gouesbet, G., Comparison of diffraction theory and generalized Lorenz-mie theory for a sphere located on axis of a laser beam, Appl. Opt., 29, 1293-1298, (1990)
[52] Lock, J. A.; Gouesbet, G., Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-mie theory. I. on-axis beams, J. Opt. Soc. Amer. A, 11, 2503-2515, (1994)
[53] Gouesbet, G.; Lock, J. A., Rigorous justification of the localized approximation to the beam- shape coefficients in generalized Lorenz-mie theory. II. off-axis beams, J. Opt. Soc. Amer. A, 11, 2516-2525, (1994)
[54] Hodges, J. T.; Gréhan, G.; Gouesbet, G.; Presser, C., Forward scattering of a Gaussian beam by a nonabsorbing sphere, Appl. Opt., 34, 2120-2132, (1995)
[55] Barton, J. P.; Alexander, D. R.; Schaub, S. A., Intemal and nearsurface electromagnetic fields for a spherical particle irradiated by a focused laser beam, J. Appl. Phys., 64, 1632-1639, (1988)
[56] Barton, J. P.; Alexander, D. R.; Schaub, S. A., Intemal fields of a spherical particle illuminated by a tightly focused laser beam: focal point positioning effects at resonance, J. Appl. Phys., 65, 2900-2906, (1989)
[57] Kozaki, S., Scattering of a Gaussian beam by a homogeneous dielectric cylinder, J. Appl. Phys., 53, 7195-7200, (1982)
[58] Gouesbet, G., Scattering of a first-order Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation, Part. Part. Syst. Charact., 12, 242-256, (1995)
[59] Gouesbet, G., Interaction between Gaussian beams and infinite cylinders, by using the theory of distributions, J. Opt. (Paris), 26, 225-239, (1995)
[60] Gouesbet, G., Scattering of higher-order Gaussian beams by an infinite cylinder, J. Opt. (Paris), 28, 45-65, (1997)
[61] Gouesbet, G., Interaction between an infinite cylinder and an arbitrary shaped beam, Appl. Opt., 36, 4292-4304, (1997)
[62] Ren, K. F.; Gréhan, G.; Gouesbet, G., Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-mie theory: formulation and numerical results, J. Opt. Soc. Amer. A, 14, 3014-3025, (1997)
[63] Mees, L.; Gréhan, G.; Gouesbet, G., Scattering of a Gaussian beam by an infinite cylinder with arbitrary location and arbitrary orientation: numerical results, Appl. Opt., 38, 1867-1876, (1999)
[64] Lock, J. A., Scattering of a diagonally incident focused Gaussian beam by an infinitely long homogeneous circular cylinder, J. Opt. Soc. Amer. A, 14, 640-652, (1997)
[65] Lock, J. A., Morphology-dependent resonances of an infinitely long circular cylinder illuminated by a diagonally incident plane wave or a focused Gaussian beam, J. Opt. Soc. Amer. A, 14, 653-661, (1997)
[66] Zhang, H. Y.; Han, Y. P., Scattering of shaped beam by an infinite cylinder of arbitrary orientation, J. Opt. Soc. Amer. B, 25, 131-135, (2008)
[67] Pawliuk, P.; Yedlin, M., Gaussian beam scattering from a dielectric cylinder, including the evanescent region, J. Opt. Soc. Amer. A, 26, 2558-2566, (2009)
[68] Zimmermann, E.; Dändliker, R.; Souli, N.; Krattiger, B., Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach, J. Opt. Soc. Amer. A, 12, 398-403, (1995)
[69] Barton, J. P., Internal and near-surface electromagnetic fields for an infinite cylinder illuminated by an arbitrary focused beam, J. Opt. Soc. Amer. A, 16, 160-166, (1999)
[70] Barton, J. P., Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination, Appl. Opt., 34, 5542-5551, (1999)
[71] Barton, J. P., Internal and near-surface electromagnetic fields for an absorbing spheroidal particle with arbitrary illumination, Appl. Opt., 34, 8472-8473, (1999)
[72] Han, Y. P.; Wu, Z. S., The expansion coefficients of a spheroidal particle illuminated by Gaussian beam, IEEE Trans. Antennas Propag., 49, 615-620, (2001)
[73] Han, Y. P.; Wu, Z. S., Scattering of a spheroidal particle illuminated by a Gaussian beam, Appl. Opt., 40, 2501-2509, (2001)
[74] Han, Y. P.; Gréhan, G.; Gouesbet, G., Generalized Lorenz-mie theory for a spheroidal particle with off-axis Gaussian-beam illumination, Appl. Opt., 42, 6621-6629, (2003)
[75] Xu, F.; Ren, K. F.; Cai, X. S., Expansion of an arbitrarily oriented, located, and shaped beam in spheroidal coordinates, J. Opt. Soc. Amer. A, 24, 109-118, (2007)
[76] Xu, F.; Ren, K. F.; Gouesbet, G.; Gréhan, G.; Cai, X. S., Generalized Lorenz-mie theory for an arbitrarily oriented, located, and shaped beam scattered by homogeneous spheroid, J. Opt. Soc. Amer. A, 24, 119-131, (2007)
[77] Zhang, H. Y.; Sun, Y. F., Scattering by a spheroidal particle illuminated with a Gaussian beam described by a localized beam model, J. Opt. Soc. Amer. B, 27, 883-887, (2007)
[78] Umashankar, K.; Taflove, A.; Rao, S. M., Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects, IEEE Trans. Antennas Propag., 34, 758-766, (1986)
[79] Harrington, R. F., Boundary integral formulations for homogeneous material bodies, J. Electromagn. Waves Appl., 3, 1-15, (1989)
[80] Rao, S. M.; Wilton, D. R., \(E\)-field, \(H\)-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies, Electromagnetics, 10, 407-421, (1990)
[81] Umashankar, K.; Taflove, A.; Rao, S. M., Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects, IEEE Trans. Antennas Propag., 34, 758-766, (1986)
[82] Sheng, X. Q.; Jin, J. M.; Song, J. M.; Chew, W. C.; Lu, C. C., Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies, IEEE Trans. Antennas Propag., 46, 1718-1726, (1998)
[83] Ergül, Ö.; Gürel, L., Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm, IEEE Trans. Antennas Propag., 57, 176-187, (2009) · Zbl 1369.78183
[84] Mackenzie, A. I.; Rao, S. M.; Baginski, M. E., Electromagnetic scattering from arbitrarily shaped dielectric bodies using paired pulse vector basis functions and method of moments, IEEE Trans. Antennas Propag., 57, 2076-2083, (2009) · Zbl 1369.78252
[85] He, J. P.; Karlsson, A.; Swartling, J.; Engels, S. A., Light scattering by multiple red blood cells, J. Opt. Soc. Amer. A, 21, 1953-1961, (2004)
[86] Borghese, F.; Denti, P.; Saija, R.; Sindoni, O. I., Optical properties of spheres containing a spherical eccentric inclusion, J. Opt. Soc. Amer. A, 9, 1327-1335, (1992)
[87] Skaropoulos, N. C.; Ioannidou, M. P.; Chrissoulidis, D. P., Indirect mode-matching solution to scattering from a dielectric sphere with an eccentric inclusion, J. Opt. Soc. Amer. A, 11, 1859-1866, (1994)
[88] Borghese, F.; Denti, P.; Saija, R., Optical properties of spheres containing several inclusions, Appl. Opt., 33, 484-493, (1994)
[89] Videen, G.; Ngo, D.; Chylek, P.; Pinnick, R. G., Light scattering from a sphere with an irregular inclusion, J. Opt. Soc. Amer. A, 12, 922-928, (1995)
[90] Ngo, D.; Videen, G.; Chýlek, P., A FORTRAN code for the scattering of EM waves by a sphere with a nonconcentric spherical inclusion, Comput. Phys. Comm., 99, 94-112, (1996) · Zbl 0926.65094
[91] Macke, A.; Mishchenko, M. I.; Cairns, B., The influence of inclusions on light scattering by large ice particles, J. Geophys. Res., 101, 23311-23316, (1996)
[92] Prabhu, D. R.; Davies, M.; Videen, G., Light scattering calculations from oleic-acid droplets with water inclusions, Opt. Express, 8, 308-313, (2001)
[93] Ioannidou, M. P.; Chrissoulidis, D. P., Electromagnetic-wave scattering by a sphere with multiple spherical inclusions, J. Opt. Soc. Amer. A, 19, 505-512, (2002)
[94] Weigel, T.; Schulte, J.; Schweiger, G., Inelastic scattering on particles with inclusions, J. Opt. Soc. Amer. A, 22, 1048-1052, (2005)
[95] Moneda, A. P.; Chrissoulidis, D. P., Dyadic green’s function of a sphere with an eccentric spherical inclusion, J. Opt. Soc. Amer. A, 24, 1695-1703, (2007)
[96] Wu, D. K.; Zhou, Y. P., Forward scattering light of droplets containing different size inclusions, Appl. Opt., 48, 2957-2965, (2009)
[97] Mikrenska, M.; Koulev, P., Simulation of light scattering by large particles with randomly distributed spherical or cubic inclusions, J. Quant. Spectrosc. Radiat. Transfer, 110, 1411-1417, (2009)
[98] Sun, X. M.; Wang, H. H.; Liu, W. Q.; Shen, J., Light scattering by a spherical particle with multiple densely packed inclusions, Chin. Phys. B, 18, 1040-1044, (2009)
[99] Sun, X. M.; Shen, J.; Wei, P. Y., Light scattering by a spheroid particle with many densely packed inclusions, Acta. Phys. Sin., 58, 6222-6226, (2009)
[100] Sun, X. M.; Wang, H. H.; Shen, J.; Wang, S. J., Scattering of polarized light by randomly oriented coated spheroidal particle, Acta. Phys. Sin., 60, 114216, (2011)
[101] Khaled, E. M.; Hill, S. C.; Barber, P. W., Light scattering by a coated sphere illuminated by a Gaussian beam, Appl. Opt., 33, 3308-3314, (1994)
[102] Gouesbet, G.; Gréhan, G., Generalized Lorenz-mie theory for a sphere with an eccentrically located spherical inclusion, J. Modern Opt., 47, 821-837, (2000) · Zbl 0947.78007
[103] Han, G. X.; Han, Y. P.; Liu, J. Y.; Zhang, Y., Scattering of an eccentric sphere arbitrarily located in a shaped beam, J. Opt. Soc. Amer. B, 25, 2064-2072, (2008)
[104] Yan, B.; Han, X. E.; Ren, K. F., Scattering of a shaped beam by a spherical particle with an eccentric spherical inclusion, J. Opt. A, 11, 015705, (2009)
[105] Wang, J. J.; Gouesbet, G.; Han, Y. P.; Gréhan, G., Study of scattering from a sphere with an eccentrically located spherical inclusion by generalized Lorenz-mie theory: internal and external field distribution, J. Opt. Soc. Amer. A, 28, 24-39, (2011)
[106] Wang, J. J.; Gouesbet, G.; Gréhan, G.; Han, Y. P.; Saengkaew, S., Morphology-dependent resonances in an eccentrically layered sphere illuminated by a tightly focused off-axis Gaussian beam: parallel and perpendicular beam incidence, J. Opt. Soc. Amer. A, 28, 1849-1859, (2011)
[107] Zhang, H. Y.; Liao, T. Q., Scattering of Gaussian beam by a spherical particle with a spheroidal inclusion, J. Quant. Spectrosc. Radiat. Transfer, 112, 1486-1491, (2011)
[108] Yan, B.; Zhang, H. Y.; Liu, C. H., Scattering of Gaussian beam by a spheroidal particle with a spherical inclusion at the center, Opt. Commun., 284, 3811-3815, (2011)
[109] Wang, M. J.; Zhang, H. Y.; Han, Y. P.; Li, Y. L., Scattering of shaped beam by a conducting infinite cylinder with dielectric coating, Appl. Phys. B, 96, 105-109, (2009)
[110] Sun, X. M.; Wang, H. H.; Zhang, H. Y., Scattering of Gaussian beam by a conducting spheroidal particle with confocal dielectric coating, J. Infrared Millim. Terahertz Waves, 31, 1100-1108, (2010)
[111] Tsang, L.; Kong, J. A.; Ding, K. H.; Ao, C. O., Scattering of electromagnetic waves, numerical simulations, (2001), Wiley New York
[112] Mackowski, D. W., Electrostatics analysis of radiative absorption by sphere clusters in the Rayleigh limit: application to soot particles, Appl. Opt., 34, 3535-3545, (1995)
[113] Mackowski, D. W., A simplified model to predict the effects of aggregation on the absorption properties of soot particles, J. Quant. Spectrosc. Radiat. Transfer, 100, 237-249, (2006)
[114] Ishimaru, A., Wave propagation and scattering in random media, (1978), Academic New York
[115] Foldy, L. L., The multiple scattering of waves. I. general theory of isotropic scattering by randomly distributed scatterers, Phys. Rev., 67, 107-119, (1945) · Zbl 0061.47304
[116] Lax, M., Multiple scattering of waves, Rev. Modern Phys., 23, 287-310, (1951) · Zbl 0045.13406
[117] Varadan, V. V.; Varadan, V. K., Multiple scattering of electromagnetic waves by randomly distributed and oriented dielectric scatters, Phys. Rev. D, 21, 388-394, (1980)
[118] Varadan, V. K.; Bringi, V. N.; Varadan, V. V.; Ishimaru, A., Multiple scattering theory for waves in discrete random media and comparison with experiments, Radio Sci., 18, 321-327, (1983)
[119] Furutsu, K., Multiple scattering of waves in a medium of randomly distributed particles and derivation of the transport equation, Radio Sci., 10, 29-44, (1975)
[120] Tsang, L.; Kong, J. A.; Ding, K. H., Scattering of electromagnetic waves, theories and applications, (2000), Wiley New York
[121] Tishkovets, V. P.; Jockers, K., Multiple scattering of light by densely packed random media of spherical particles: dense media vector radiative transfer equation, J. Quant. Spectrosc. Radiat. Transfer, 101, 54-72, (2006)
[122] Lu, C. C.; Chew, W. C.; Tsang, L., The application of recursive aggregate \(T\)-matrix algorithm in the Monte Carlo simulations of the extinction rate of random distribution of particles, Radio Sci., 30, 25-28, (1995)
[123] Chew, W. C.; Lin, J. H.; Yang, X. G., An FFT \(T\)-matrix method for 3D microwave scattering solution from random discrete scatterers, Microw. Opt. Technol. Lett., 9, 194-196, (1995)
[124] Siqueira, P. R.; Sarabandi, K., \(T\)-matrix determination of effective permittivity for three-dimensional dense random media, IEEE Trans. Antennas Propag., 48, 317-327, (2000)
[125] Mishchenko, M. I.; Liu, L.; Mackowski, D. W.; Cairns, B.; Videen, G., Multiple scattering by random particulate media: exact 3D results, Opt. Express, 15, 2822-2836, (2007)
[126] Chart, C. H.; Tsang, L., A sparse-matrix canonical-grid method for scattering by many scatterers, Microw. Opt. Technol. Lett., 8, 114-118, (1995)
[127] Barrowes, B. E.; Ao, C. O.; Teixeira, F. L.; Kong, J. A., Sparse matrix/canonical grid method applied to 3-D dense medium simulations, IEEE Trans. Antennas Propag., 51, 48-58, (2003)
[128] Y.F. Sun, C.H. Chan, R. Mittra, L. Tsang, Characteristic basis function method for solving large problem arising in dense medium scattering, in: IEEE Antennas and Propagation Society International Symposium, 2003, pp. 1068-1071.
[129] Cui, Z. W; Han, Y. P; Li, C. Y., Simulation of electromagnetic scattering by random discrete particles using a hybrid FE-BI-CBFM technique, Waves Random Complex Media, 22, 207-221, (2012) · Zbl 1291.78056
[130] Sheng, X. Q.; Jin, J. M.; Song, J. M.; Lu, C. C.; Chew, W. C., On the formulation of hybrid finite-element and boundary-integral methods for 3-D scattering, IEEE Trans. Antennas Propag., 46, 303-311, (1998)
[131] Liu, J.; Jin, J. M., A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems, IEEE Trans. Antennas Propag., 49, 1794-1806, (2001) · Zbl 1001.78021
[132] Sheng, X. Q.; Peng, Z., Analysis of scattering by large objects with off-diagonally anisotropic material using finite element-boundary integral-multilevel fast multipole algorithm, IET Microw. Antennas Propag., 4, 492-500, (2010)
[133] Cui, Z. W.; Han, Y. P.; Ai, X.; Zhao, W. J., A domain decomposition of the finite element-boundary integral method for scattering by multiple objects, Electromagnetics, 31, 469-482, (2011)
[134] Jin, J. M., The finite element method in electromagnetics, (2002), Wiley New York · Zbl 1001.78001
[135] Q.X. Zhang, Y.M. Zhang, B.H. Liu, S.Y. Liu, Characterization of smoke particles using polarization modulated scattering, in: International Conference on Optoelectronics and Image Processing, 2010, pp. 325-327.
[136] Liu, L.; Mishchenko, M. I., Scattering and radiative properties of complex soot and soot-containing aggregate particles, J. Quant. Spectrosc. Radiat. Transfer, 106, 262-273, (2007)
[137] Liu, L.; Mishchenko, M. I.; Arnott, W. P., A study of radiative properties of fractal soot aggregates using the superposition \(T\)-matrix method, J. Quant. Spectrosc. Radiat. Transfer, 109, 2656-2663, (2008)
[138] Farias, T. L.; Köylüü, ö.; Carvalho, M. G., Range of validity of the Rayleigh-Debye-gans theory for optics of fractal aggregates, Appl. Opt., 35, 6560-6567, (1996)
[139] Zhao, Y.; Ma, L., Applicable range of the Rayleigh-Debye-gans theory for calculating the scattering matrix of soot aggregates, Appl. Opt., 48, 591-597, (2009)
[140] Kimura, H., Light-scattering properties of fractal aggregates: numerical calculations by a superposition technique and the discrete-dipole approximation, J. Quant. Spectrosc. Radiat. Transfer, 70, 581-594, (2001)
[141] Botet, R.; Rannou, P.; Cabane, M., Mean-field approximation of mie scattering by fractal aggregates of identical spheres, Appl. Opt., 36, 8791-8797, (1997)
[142] Witten, T. A.; Sander, L. M., Diffusion-limited aggregation, Phys. Rev. B, 27, 5686-5697, (1983)
[143] Witten, T. A.; Sander, L. M., Diffusion-limited aggregation, a kinetic critical phenomena, Phys. Rev. Lett., 47, 1400-1403, (1981)
[144] Sander, L. M.; Cheng, Z. M.; Richter, R., Diffusion-limited aggregation in three dimensions, Phys. Rev. B, 28, 6394, (1983)
[145] Lu, N.; Sorensen, C. M., Depolarized light scattering from fractal soot aggregates, Phys. Rev. E, 50, 3109, (1994)
[146] Sorensen, C. M.; Roberts, G. M., The prefactor of fractal aggregates, J. Colloid Interface Sci., 186, 447-452, (1997)
[147] Sorensen, C. M.; Oh, C.; Schmidt, P. W.; Rieker, T. P., Scaling description of the structure factor of fractal soot composites, Phys. Rev. E, 58, 4666, (1998)
[148] Pierce, F.; Sorensen, C. M., A chakrabart, computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force, Phys. Rev. E, 74, 021411, (2006)
[149] Connaughton, C.; Rajesh, R.; Zaboronski, O., Constant flux relation for diffusion-limited cluster-cluster aggregation, Phys. Rev. E, 78, 041403, (2008)
[150] Suzuki, M.; Kun, F.; Ito, N., Cluster-cluster aggregation of Ising dipolar particles under thermal noise, Phys. Rev. E, 80, 021402, (2009)
[151] Sheng, X. Q.; Yung, E. K.N., Implementation and experiments of a hybrid algorithm of the MLFMA-enhanced FE-BI method for open-region inhomogeneous electromagnetic problems, IEEE Trans. Antennas Propag., 50, 163-167, (2009)
[152] Charalampopoulos, T. T., Morphology and dynamics of agglomerated particulates in combustion systems using light scattering techniques, Prog. Energy Combust. Sci., 18, 13-45, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.