zbMATH — the first resource for mathematics

Generalized fast automatic differentiation technique. (English. Russian original) Zbl 1361.65042
Comput. Math. Math. Phys. 56, No. 11, 1819-1833 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 11, 1847-1862 (2016).
Summary: A new efficient technique intended for the numerical solution of a broad class of optimal control problems for complicated dynamical systems described by ordinary and/or partial differential equations is investigated. In this approach, canonical formulas are derived to precisely calculate the objective function gradient for a chosen finite-dimensional approximation of the objective functional.

65K10 Numerical optimization and variational techniques
49J15 Existence theories for optimal control problems involving ordinary differential equations
49J20 Existence theories for optimal control problems involving partial differential equations
65D25 Numerical differentiation
Full Text: DOI
[1] Albu, A. F.; Zubov, V. I., Determination of functional gradient in an optimal control problem related to metal solidification, Comput. Math. Math. Phys., 49, 47-70, (2009) · Zbl 1224.93093
[2] F. P. Vasil’ev, Optimization Methods (Faktorial, Moscow, 2002) [in Russian].
[3] Lellouche, J.-M.; Devenon, J.-L.; Dekeyser, I., Boundary control of burgers’ equation: A numerical approach, Comput. Math. Appl., 28, 33-44, (1994) · Zbl 0807.76065
[4] Evtushenko, Y. G.; Zasukhina, E. S.; Zubov, V. I., Numerical optimization of solutions to burgers’ problems by means of boundary conditions, Comput. Math. Math. Phys., 37, 1406-1414, (1997) · Zbl 0947.90123
[5] Aida-Zade, K. R.; Evtushenko, Y. G., Fast automatic differentiation, Mat. Model., 1, 121-139, (1989) · Zbl 0972.65504
[6] Yu. G. Evtushenko and V. P. Mazurik, Optimization Software (Znanie, Moscow, 1989) [in Russian]. · Zbl 0732.65051
[7] Evtushenko, Y. G., Automatic differentiation viewed from optimal control theory, (1991), SIAM · Zbl 0782.65022
[8] Iri, M., Simultaneous computation of functions, partial derivatives and estimates of rounding errors, Jpn. J. Appl. Math., 1, 223-252, (1984) · Zbl 0634.65009
[9] Automatic Differentiation of Algorithms: Theory, Implementation, and Application, Ed. by A. Griewank and G. F. Corliss (Philadelphia, SIAM, 1991). · Zbl 0807.76065
[10] Evtushenko, Y.; Zasuhina, E.; Zubov, V., Fast AD technique and inverse problems, 23-24, (2000), Sophia, Antipolis, France
[11] A. Griewank, Evaluating derivatives. Philadelphia: SIAM (2000). · Zbl 0958.65028
[12] U. Naumann, The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation (SIAM, Philadelphia, 2012). · Zbl 1275.65015
[13] Evtushenko, Y. G., Computation of exact gradients in distributed dynamic systems, Optim. Methods Software, 9, 45-75, (1998) · Zbl 0909.49013
[14] Yu. G. Evtushenko, Optimization and Fast Automatic Differentiation (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2013) [in Russian].
[15] Albu, A. F.; Zubov, V. I., Optimal control of the process of solidification, Comput. Math. Math. Phys., 44, 34-44, (2004)
[16] Albu, A. V.; Albu, A. F.; Zubov, V. I., Functional gradient evaluation in the optimal control of a complex dynamical system, Comput. Math. Math. Phys., 51, 762-780, (2011) · Zbl 1249.80006
[17] Albu, A. V.; Albu, A. F.; Zubov, V. I., Control of substance solidification in a complex-geometry mold, Comput. Math. Math. Phys., 52, 1612-1623, (2012) · Zbl 1274.82065
[18] Albu, A. F.; Zubov, V. I., Investigation of the optimal control problem for metal solidification in a new formulation, Comput. Math. Math. Phys., 54, 756-766, (2014) · Zbl 1313.80002
[19] Albu, A. F.; Zubov, V. I., Investigation of the optimal control of metal solidification for a complex-geometry object in a new formulation, Comput. Math. Math. Phys., 54, 1804-1816, (2014) · Zbl 1323.49016
[20] Albu, A. F.; Zubov, V. I., On the efficiency of solving optimal control problems by means of fast automatic differentiation technique, Tr. Inst. Mat. Mekh. Ural. Otd. Ross. Akad. Nauk, 21, 20-29, (2015)
[21] S. L. Sobolev, Partial Differential Equations of Mathematical Physics, (Pergamon, Oxford, 1964; Nauka, Moscow, 1966). · Zbl 0123.06508
[22] G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems (Nauka, Moscow, 1992; Kluwer Academic, Dordrecht, 1995). · Zbl 0890.65032
[23] A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001). · Zbl 0971.65076
[24] M. A. Lavrent’ev and L. A. Lusternik, A Course in Calculus of Variations (Gostekhizdat, Moscow, 1950) [in Russian].
[25] I. M. Gelfand and S. V. Fomin, Calculus of Variations (Fizmatlit, Moscow, 1961; Prentice Hall, Englewood Cliffs, N.J., 1963). · Zbl 0127.05402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.