zbMATH — the first resource for mathematics

Negative energy, debts, and disinformation from the viewpoint of analytic number theory. (English) Zbl 1362.82023
Summary: The number zero and negative numbers are added to analytical number theory which includes transcendents. New solutions of Diophantine equations are applied to thermodynamics, information theory and biology.
82B30 Statistical thermodynamics
11D04 Linear Diophantine equations
94A24 Coding theorems (Shannon theory)
Full Text: DOI
[1] L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1964) [in Russian]. · Zbl 0859.76001
[2] Maslov, V.P.; Nazaikinskii, V.E., On the rate of convergence to the Bose-Einstein distribution, Math. Notes, 99, 95-109, (2016) · Zbl 1338.82051
[3] Vershik, A. M., Statistical mechanics of combinatorial partitions, and their limit shapes, Funktsional. Anal. i Prilozhen., 30, 19-39, (1996) · Zbl 0868.05004
[4] Maslov, V. P.; Nazaikinskii, V. E., Disinformation theory for bosonic computational media, Math. Notes, 99, 895-900, (2016) · Zbl 1349.82022
[5] Weyl, H., Über die asymptotische verteilung der eigenwerte, 110-117, (1911) · JFM 42.0432.03
[6] Courant, R., Über die eigenwerte bei den differentialgleichungen der mathematischen physik, Math. Z., 7, 1-57, (1920) · JFM 47.0455.02
[7] Agmon, S., Asymptotic formulas with remainder estimates for eigenvalues of elliptic operators, Arch. Rational Mech. Anal., 28, 165-183, (1968) · Zbl 0159.15903
[8] G. E. Andrews, The Theory of Partitions (Addison-Wesley, Reading, Mass., 1976). · Zbl 0371.10001
[9] Hardy, G. H.; Ramanujan, S., Asymptotic formulae in combinatory analysis, Proc. London Math. Soc., 2, 75-115, (1917) · JFM 46.0198.04
[10] Rademacher, H., On the partition function \(p\)(\(n\)), Proc. London Math. Soc., 2, 241-254, (1937) · Zbl 0017.05503
[11] Erdős, P.; Lehner, J., The distribution of the number of summands in the partitions of A positive integer, Duke Math. J., 8, 335-345, (1941) · Zbl 0025.10703
[12] Vershik, A. M., Limit distribution of the energy of A quantum ideal gas from the viewpoint of the theory of partitions of natural numbers, Uspekhi Mat. Nauk, 52, 139-146, (1997)
[13] Vershik, A. M.; Freiman, G. A.; Yakubovich, Yu. V., A local limit theorem for random strict partitions, Teor. Veroyatnost. Primenen., 44, 506-525, (1999) · Zbl 0969.60034
[14] Maslov, V. P., On A general theorem of set theory leading to the Gibbs, Bose-Einstein, and Pareto distributions As well As to the Zipf-Mandelbrot law for the stock market, Mat. Zametki, 78, 870-877, (2005) · Zbl 1112.91036
[15] V. P. Maslov, Quantum Economics (Nauka, Moscow, 2005) [in Russian]. · Zbl 1182.91134
[16] Maslov, V. P.; Nazaikinskii, V. E., On the distribution of integer random variables related by A certain linear inequality, I, Mat. Zametki, 83, 232-263, (2008) · Zbl 1150.82017
[17] Maslov, V. P.; Nazaikinskii, V. E., On the distribution of integer random variables related by A certain linear inequality, II, Mat. Zametki, 83, 381-401, (2008) · Zbl 1153.82001
[18] Maslov, V. P.; Nazaikinskii, V. E., On the distribution of integer random variables related by A certain linear inequality, III, Mat. Zametki, 83, 880-898, (2008) · Zbl 1202.82006
[19] A. G. Postnikov, Introduction to Analytic Number Theory (Nauka, Moscow, 1971). · Zbl 0231.10001
[20] J. Knopfmacher, Abstract Analytic Number Theory (North-Holland, Amsterdam, 1975). · Zbl 0322.10001
[21] A. A. Karatsuba Fundamentals of Analytic Number Theory (URSS, Moscow, 2004) [in Russian].
[22] Bredikhin, B. M., Elementary solution of inverse problems on bases of free semigroups, Mat. Sb., 50, 221-232, (1960)
[23] Maslov, V. P., Mathematical justification for the transition to negative pressures of the new ideal liquid, Math. Notes, 92, 402-411, (2012) · Zbl 1469.76004
[24] Maslov, V. P., Case of less than two degrees of freedom, negative pressure, and the Fermi-Dirac distribution for a hard liquid, Math. Notes, 98, 138-157, (2015) · Zbl 1329.82128
[25] Nazaikinskii, V. E., On the asymptotics of the number of states for the Bose-Maslov gas, Math. Notes, 91, 816-823, (2012) · Zbl 1285.82048
[26] A. N. Kolmogorov, Jubilee Collection of Works in Three Volumes Ed. by A. N. Shiryaev (Fizmatlit, Moscow, 2003).
[27] Maslov, V. P., New thermodynamics and frost cleft in conifers, Math. Notes, 98, 343-347, (2015)
[28] Maslov, V. P.; Maslov, A. V., On the spectral gap in the region of negative pressures, Math. Notes, 99, 711-714, (2016) · Zbl 1351.82100
[29] V. N. Kolokoltsov and V. P. Maslov, Idempotent Analysis and Its Applications (Kluwer Academic Publ., Dordrecht /Boston/London, 1997). · Zbl 0941.93001
[30] Maslov, V. P., Mathematical conception of “phenomenological” equilibrium thermodynamics, Russ. J. Math. Phys., 18, 363-370, (2011) · Zbl 1326.82009
[31] Maslov, V. P., New construction of classical thermodynamics and UD-statistics, Russian J. Math. Phys., 21, 256-284, (2014) · Zbl 1311.82019
[32] A. I. Burshtein, Molecular Physics (Nauka, Novosibirsk, 1986) [in Russian].
[33] Perron, O., Zur theorie der dirichletschen reihen, J. für die reine und angewandte Mathematik, 134, 95-143, (1908) · JFM 39.0328.02
[34] G. H. Hardy and M. Riesz, The General Theory of Dirichlet’s Series (Cambridge University Press, Cambridge, 1915). · JFM 45.0387.03
[35] Minenkov, D. S.; Nazaikinskii, V. E.; Chernyshev, V. L., On the Bose-Maslov statistics in the case of infinitely many degrees of freedom, Dokl. Ross. Akad. Nauk, 468, 618-621, (2016) · Zbl 1357.11095
[36] Minenkov, D. S.; Nazaikinskii, V. E.; Chernyshev, V. L., On the asymptotics of the counting function of elements in an additive arithmetic semigroup with exponential counting function of prime generators, (2016) · Zbl 1366.11105
[37] M. V. Fedoryuk, The Saddle-Point Method (Nauka, Moscow, 1977) [in Russian]. · Zbl 0463.41020
[38] Maslov, V. P.; Nazaikinskii, V. E., On the distribution of integer random variables satisfying two linear relations, Mat. Zametki, 84, 69-98, (2008) · Zbl 1219.60031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.