×

zbMATH — the first resource for mathematics

Extraction of gravitational-wave energy in higher dimensional numerical relativity using the Weyl tensor. (English) Zbl 1358.83024

MSC:
83C35 Gravitational waves
83C57 Black holes
83C40 Gravitational energy and conservation laws; groups of motions
83E15 Kaluza-Klein and other higher-dimensional theories
83-08 Computational methods for problems pertaining to relativity and gravitational theory
53Z05 Applications of differential geometry to physics
Software:
Cactus
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Godazgar M and Reall H S 2012 Peeling of the Weyl tensor and gravitational radiation in higher dimensions Phys. Rev. D 85 084021
[2] Abbott B P et al 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett.116 061102
[3] Abbott B P et al 2016 GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence Phys. Rev. Lett.116 241103
[4] Abbott B P et al 2016 Properties of the binary black hole merger GW150914 Phys. Rev. Lett.116 241102
[5] Abbott B P et al 2016 Directly comparing GW150914 with numerical solutions of Einstein’s equations for binary black hole coalescence Phys. Rev. D 94 064035
[6] Abbott B P et al 2016 Tests of general relativity with GW150914 Phys. Rev. Lett.116 221101
[7] Abbott B P et al 2016 Astrophysical implications of the binary black-hole merger GW150914 Astrophys. J.818 L22
[8] Adrian-Martinez S et al 2016 High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube Phys. Rev. D 93 122010
[9] Regge T and Wheeler J A 1957 Stability of a Schwarzschild singularity Phys. Rev.108 1063–9
[10] Zerilli F J 1970 Effective potential for even parity Regge-Wheeler gravitational perturbation equations Phys. Rev. Lett.24 737–8
[11] Emparan R and Reall H S 2008 Black holes in higher dimensions Living Rev. Relativ.vol 11 p 1 · Zbl 1166.83002
[12] Figueras P, Kunesch M and Tunyasuvunakool S 2015 The endpoint of black ring instabilities and the weak cosmic censorship conjecture Phys. Rev. Lett.116 071102
[13] Shibata M and Yoshino H 2010 Bar-mode instability of rapidly spinning black hole in higher dimensions: numerical simulation in general relativity Phys. Rev. D 81 104035
[14] Santos J E and Way B 2015 Neutral black rings in five dimensions are unstable Phys. Rev. Lett.114 221101
[15] Zilhão M, Cardoso V, Herdeiro C, Lehner L and Sperhake U 2014 Testing the nonlinear stability of Kerr-Newman black holes Phys. Rev. D 90 124088
[16] Dafermos M and Rodnianski I 2010 The black hole stability problem for linear scalar perturbations On Recent Developments in Theoretical and Experimental General Relativity, Astrophysics and Relativistic Field Theories. Proc., 12th Marcel Grossmann Meeting on General Relativity(Paris, France, 12–18 July 2009)vol 1–3 pp 132–89
[17] Kanti P 2009 Black holes at the LHC Lect. Notes Phys.769 387–423 · Zbl 1163.83304
[18] Cardoso V, Gualtieri L, Herdeiro C and Sperhake U 2015 Exploring new physics frontiers through numerical relativity Living Rev. Relativ.18 1
[19] Choptuik M W, Lehner L and Pretorius F 2015 Probing strong field gravity through numerical simulations (arXiv:1502.06853 [gr-qc])
[20] Bondi H, Pirani F A E and Robinson I 1959 Gravitational waves in general relativity. 3. Exact plane waves Proc. R. Soc. A 251 519–33 · Zbl 0084.44002
[21] Pirani F A E 1957 Invariant formulation of gravitational radiation theory Phys. Rev.105 1089–99 · Zbl 0077.41901
[22] Bondi H 1957 Plane gravitational waves in general relativity Nature179 1072–3 · Zbl 0082.21203
[23] Bondi H 1960 Gravitational waves in general relativity Nature186 535
[24] Newman E and Penrose R 1962 An approach to gravitational radiation by a method of spin coefficients J. Math. Phys.3 566–78 · Zbl 0108.40905
[25] Bondi H, van der Burg M G J and Metzner A W K 1962 Gravitational waves in general relativity VII. Waves from axisymmetric isolated systems Proc. R. Soc. A 269 21–52 · Zbl 0106.41903
[26] Sachs R K 1962 Gravitational waves in general relativity. 8. Waves in asymptotically flat space-times Proc. R. Soc. A 270 103–26
[27] Saulson P R 2011 Josh Goldberg and the physical reality of gravitational waves Gen. Relativ. Gravit.43 3289–99 · Zbl 1230.83008
[28] Peters P C 1964 Gravitational radiation and the motion of two point masses Phys. Rev.136 B1224–32
[29] Cunningham C T, Price R H and Moncrief V 1978 Radiation from collapsing relativistic stars. I. Linearized odd-parity radiation Astrophys. J.224 643–67
[30] Cunningham C T, Price R H and Moncrief V 1979 Radiation from collapsing relativistic stars. II. Linearized even parity radiation Astrophys. J.230 870–92
[31] Blanchet L, Damour T and Schaefer G 1990 Post-Newtonian hydrodynamics and post-Newtonian gravitational wave generation for numerical relativity Mon. Not. R. Astron. Soc.242 289–305 · Zbl 0694.76051
[32] Blanchet L, Damour T, Iyer B R, Will C M and Wiseman A G 1995 Gravitational-radiation damping of compact binary systems to second post-Newtonian order Phys. Rev. Lett.74 3515–8
[33] Ruiz M, Takahashi R, Alcubierre M and Nuñez D 2008 Multipole expansions for energy and momenta carried by gravitational waves Gen. Relativ. Gravit.40 1705–29 · Zbl 1145.83325
[34] Nerozzi A and Elbracht O 2008 Using curvature invariants for wave extraction in numerical relativity (arXiv:0811.1600 [gr-qc])
[35] Centrella J M, Baker J G, Kelly B J and van Meter J R 2010 Black-hole binaries, gravitational waves, and numerical relativity Rev. Mod. Phys.82 3069 · Zbl 1243.83009
[36] Reisswig C, Ott C D, Sperhake U and Schnetter E 2011 Gravitational wave extraction in simulations of rotating stellar core collapse Phys. Rev. D 83 064008
[37] Hinder I et al 2014 Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration Class. Quantum Grav.31 025012
[38] Lehner L and Moreschi O M 2007 Dealing with delicate issues in waveform calculations Phys. Rev. D 76 124040
[39] Read J S et al 2013 Matter effects on binary neutron star waveforms Phys. Rev. D 88 044042
[40] Mroué A H et al 2013 A catalog of 171 high-quality binary black-hole simulations for gravitational-wave astronomy Phys. Rev. Lett.111 241104
[41] Taracchini A et al 2014 Effective-one-body model for black-hole binaries with generic mass ratios and spins Phys. Rev. D 89 061502
[42] Pürrer M 2014 Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries Class. Quantum Grav.31 195010
[43] Khan S et al 2016 Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era Phys. Rev. D 93 044007
[44] Hannam M et al 2014 A simple model of complete precessing black-hole-binary gravitational waveforms Phys. Rev. Lett.113 151101
[45] Moncrief V 1974 Gravitational perturbations of spherically symmetric systems. I. The exterior problem Ann. Phys.88 323–42
[46] Thorne K S 1980 Multipole expansions of gravitational radiation Rev. Mod. Phys.52 299–339
[47] Ott C D, Dimmelmeier H, Marek A, Janka H-T, Hawke I, Zink B and Schnetter E 2007 3D collapse of rotating stellar iron cores in general relativity with microphysics Phys. Rev. Lett.98 261101 · Zbl 1117.85012
[48] Shibata M and Sekiguchi Y-I 2005 Three-dimensional simulations of stellar core collapse in full general relativity: nonaxisymmetric dynamical instabilities Phys. Rev. D 71 024014
[49] Landau L D and Lifshitz E M 1975 The classical theory of fields (Oxford: Elsevier)
[50] Lovelace G, Chen Y, Cohen M, Kaplan J D, Keppel D, Matthews K D, Nichols D A, Scheel M A and Sperhake U 2010 Momentum flow in black-hole binaries. II. Numerical simulations of equal-mass, head-on mergers with antiparallel spins Phys. Rev. D 82 064031
[51] Reisswig C, Bishop N T, Pollney D and Szilagyi B 2009 Unambiguous determination of gravitational waveforms from binary black hole mergers Phys. Rev. Lett.103 221101
[52] Reisswig C, Bishop N T, Pollney D and Szilagyi B 2010 Characteristic extraction in numerical relativity: binary black hole merger waveforms at null infinity Class. Quantum Grav.27 075014 · Zbl 1187.83026
[53] Babiuc M C, Szilagyi B, Winicour J and Zlochower Y 2011 A characteristic extraction tool for gravitational waveforms Phys. Rev. D 84 044057 · Zbl 1219.83032
[54] Pretorius F 2005 Evolution of binary black hole spacetimes Phys. Rev. Lett.95 121101
[55] Baker J G, Centrella J, Choi D-I, Koppitz M and van Meter J 2006 Gravitational-wave extraction from an inspiraling configuration of merging black holes Phys. Rev. Lett.96 111102
[56] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Accurate evolutions of orbiting black-hole binaries without excision Phys. Rev. Lett.96 111101
[57] Sperhake U 2007 Binary black-hole evolutions of excision and puncture data Phys. Rev. D 76 104015
[58] Herrmann F, Hinder I, Shoemaker D, Laguna P and Matzner R A 2007 Gravitational recoil from spinning binary black hole mergers Astrophys. J.661 430–6
[59] Brügmann B, González J A, Hannam M D, Husa S, Sperhake U and Tichy W 2008 Calibration of moving puncture simulations Phys. Rev. D 77 024027 · Zbl 1117.83349
[60] Boyle M, Brown D A, Kidder L E, Mroué A H, Pfeiffer H P, Scheel M A, Cook G B and Teukolsky S A 2007 High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions Phys. Rev. D 76 124038
[61] Bishop N T and Rezzolla L 2016 Extraction of gravitational waves in numerical relativity Living Rev. Relativ.20 1 · Zbl 1366.83020
[62] Cardoso V, Dias O J C and Lemos J P S 2003 Gravitational radiation in D-dimensional space-times Phys. Rev. D 67 064026
[63] Yoshino H and Shibata M 2009 Higher-dimensional numerical relativity: formulation and code tests Phys. Rev. D 80 084025
[64] Kodama H and Ishibashi A 2003 A master equation for gravitational perturbations of maximally symmetric black holes in higher dimensions Prog. Theor. Phys.110 701–22 · Zbl 1050.83016
[65] Ishibashi A and Kodama H 2011 Perturbations and stability of static black holes in higher dimensions Prog. Theor. Phys. Suppl.189 165–209 · Zbl 1291.83144
[66] Witek H, Zilhão M, Gualtieri L, Cardoso V, Herdeiro C, Nerozzi A and Sperhake U 2010 Numerical relativity for D dimensional space-times: head-on collisions of black holes and gravitational wave extraction Phys. Rev. D 82 104014
[67] Witek H, Cardoso V, Gualtieri L, Herdeiro C, Sperhake U and Zilhao M 2011 Numerical relativity in D dimensional space-times: collisions of unequal mass black holes J. Phys.: Conf. Ser.314 012104
[68] Tangherlini F R 1963 Schwarzschild field in n dimensions and the dimensionality of space problem Nuovo Cimento27 636–51 · Zbl 0114.21302
[69] Witek H, Okawa H, Cardoso V, Gualtieri L, Herdeiro C, Shibata M, Sperhake U and Zilhão M 2014 Higher dimensional numerical relativity: code comparison Phys. Rev. D 90 084014
[70] Ortaggio M, Pravda V, Pravdova A and Reall H S 2012 On a five-dimensional version of the Goldberg-Sachs theorem Class. Quantum Grav.29 205002 · Zbl 1256.83004
[71] Teukolsky S A 1972 Rotating black holes–separable wave equations for gravitational and electromagnetic perturbations Phys. Rev. Lett.29 1114–8
[72] Teukolsky S A 1973 Perturbations of a rotating black hole. 1. Fundamental equations for gravitational electromagnetic and neutrino field perturbations Astrophys. J.185 635–47
[73] Durkee M and Reall H S 2011 Perturbations of higher-dimensional spacetimes Class. Quantum Grav.28 035011 · Zbl 1208.83098
[74] Chesler P M and Yaffe L G 2014 Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes J. High Energy Phys.JHEP07(2014) 086
[75] Zilhao M, Witek H, Sperhake U, Cardoso V, Gualtieri L, Herdeiro C and Nerozzi A 2010 Numerical relativity in higher dimensions J. Phys.: Conf. Ser.229 012074
[76] Zilhao M 2012 New frontiers in numerical relativity PhD Thesis Aveiro University
[77] Pretorius F 2005 Numerical relativity using a generalized harmonic decomposition Class. Quantum Grav.22 425–52 · Zbl 1067.83001
[78] Shibata M and Yoshino H 2010 Nonaxisymmetric instability of rapidly rotating black hole in five dimensions Phys. Rev. D 81 021501
[79] Yoshino H and Shibata M 2011 Higher-dimensional numerical relativity: current status Prog. Theor. Phys. Suppl.189 269–310 · Zbl 1291.83166
[80] Yoshino H and Shibata M 2011 Exploring higher-dimensional black holes in numerical relativity Prog. Theor. Phys. Suppl.190 282–303
[81] Shibata M and Nakamura T 1995 Evolution of three-dimensional gravitational waves: harmonic slicing case Phys. Rev. D 52 5428–44 · Zbl 1250.83027
[82] Baumgarte T W and Shapiro S L 1998 On the numerical integration of Einstein’s field equations Phys. Rev. D 59 024007
[83] Cook W G, Figueras P, Kunesch M, Sperhake U and Tunyasuvunakool S 2016 Dimensional reduction in numerical relativity: modified cartoon formalism and regularization 3rd Amazonian Symp. on Physics and 5th NRHEP Network Meeting: Celebrating 100 Years of General Relativity(Belem, Brazil, 28 September–2 October 2015)Int. J. Mod. Phys.25 1641013 · Zbl 1347.83019
[84] Arnowitt R, Deser S and Misner C W 1962 The dynamics of general relativity Gravitation an Introduction to Current Research ed L Witten (New York: Wiley) pp 227–65
[85] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (New York: W. H. Freeman)
[86] York J W Jr 1979 Kinematics and dynamics of general relativity Sources of Gravitational Radiation ed L Smarr (Cambridge: Cambridge University Press) pp 83–126
[87] Gourgoulhon E 2007 3 + 1 formalism and bases of numerical relativity (arXiv: gr-qc/0703035) · Zbl 1254.83001
[88] Sperhake U 2013 Black holes on supercomputers: numerical relativity applications to astrophysics and high-energy physics Acta Phys. Pol. B 44 2463–536 · Zbl 1371.83116
[89] Cao Z and Hilditch D 2012 Numerical stability of the Z4c formulation of general relativity Phys. Rev. D 85 124032
[90] Alic D, Bona-Casas C, Bona C, Rezzolla L and Palenzuela C 2012 Conformal and covariant formulation of the Z4 system with constraint-violation damping Phys. Rev. D 85 064040
[91] Hilditch D, Bernuzzi S, Thierfelder M, Cao Z, Tichy W and Brügmann B 2013 Compact binary evolutions with the Z4c formulation Phys. Rev. D 88 084057
[92] Garfinkle D 2002 Harmonic coordinate method for simulating generic singularities Phys. Rev. D 65 044029 · Zbl 1043.83025
[93] Alcubierre M, Brandt S, Bruegmann B, Holz D, Seidel E, Takahashi R and Thornburg J 2001 Symmetry without symmetry: numerical simulation of axisymmetric systems using Cartesian grids Int. J. Mod. Phys. D 10 273–90
[94] Tanabe K, Kinoshita S and Shiromizu T 2011 Asymptotic flatness at null infinity in arbitrary dimensions Phys. Rev. D 84 044055
[95] Kinnersley W 1969 Type D vacuum metrics J. Math. Phys.10 1195–203 · Zbl 0182.30202
[96] Zhang F, Brink J, Szilagyi B and Lovelace G 2012 A geometrically motivated coordinate system for exploring spacetime dynamics in numerical-relativity simulations using a quasi-Kinnersley tetrad Phys. Rev. D 86 084020
[97] Sperhake U, Berti E, Cardoso V, Gonzalez J A, Bruegmann B and Ansorg M 2008 Eccentric binary black-hole mergers: the transition from inspiral to plunge in general relativity Phys. Rev. D 78 064069
[98] Cactus Computational Toolkit homepage: http://cactuscode.org/
[99] Allen G, Goodale T, Massó J and Seidel E 1999 The cactus computational toolkit and using distributed computing to collide neutron stars Proc. of 8th IEEE Int. Symp. on High Performance Distributed Computing(Redondo Beach, 1999)
[100] Carpet Code homepage: http://carpetcode.org/
[101] Schnetter E, Hawley S H and Hawke I 2004 Evolutions in 3D numerical relativity using fixed mesh refinement Class. Quantum Grav.21 1465–88 · Zbl 1047.83002
[102] van Meter J R, Baker J G, Koppitz M and Choi D-I 2006 How to move a black hole without excision: gauge conditions for the numerical evolution of a moving puncture Phys. Rev. D 73 124011
[103] Brill D R and Lindquist R W 1963 Interaction energy in geometrostatics Phys. Rev.131 471–6 · Zbl 0117.23604
[104] Zilhão M, Ansorg M, Cardoso V, Gualtieri L, Herdeiro C, Sperhake U and Witek H 2011 Higher-dimensional puncture initial data Phys. Rev. D 84 084039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.