zbMATH — the first resource for mathematics

Adjoint lattice Boltzmann for topology optimization on multi-GPU architecture. (English) Zbl 1359.76231
Summary: In this paper we present a topology optimization technique applicable to a broad range of flow design problems. We propose also a discrete adjoint formulation effective for a wide class of Lattice Boltzmann Methods (LBM). This adjoint formulation is used to calculate sensitivity of the LBM solution to several type of parameters, both global and local. The numerical scheme for solving the adjoint problem has many properties of the original system, including locality and explicit time-stepping. Thus it is possible to integrate it with the standard LBM solver, allowing for straightforward and efficient parallelization (overcoming limitations typical for the discrete adjoint solvers). This approach is successfully used for the channel flow to design a free-topology mixer and a heat exchanger. Both resulting geometries being very complex maximize their objective functions, while keeping viscous losses at acceptable level.

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65Y10 Numerical algorithms for specific classes of architectures
49Q10 Optimization of shapes other than minimal surfaces
Full Text: DOI
[1] Mohammadi, B.; Pironneau, O.; Mohammadi, B.; Pironneau, O., Applied shape optimization for fluids, vol. 28, (2001), Oxford University Press Oxford · Zbl 1018.76039
[2] Rozvany, G. I.N.; Lewinski, T., Topology optimization in structural and continuum mechanics, (2013), Springer Science & Business Media · Zbl 1271.74012
[3] A. Jameson, Aerodynamic shape optimization using the adjoint method, Lectures at the Von Karman Institute, Brussels. · Zbl 1201.76235
[4] Borrvall, T.; Petersson, J., Topology optimization of fluids in Stokes flow, Internat. J. Numer. Methods Fluids, 41, 1, 77-107, (2003) · Zbl 1025.76007
[5] Othmer, C., A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows, Internat. J. Numer. Methods Fluids, 58, 8, 861-877, (2008) · Zbl 1152.76025
[6] Andreasen, C. S.; Gersborg, A. R.; Sigmund, O., Topology optimization of microfluidic mixers, Internat. J. Numer. Methods Fluids, 61, 5, 498-513, (2009) · Zbl 1172.76014
[7] Bendsoe, M. P., Topology optimization: theory, methods and applications, (2003), Springer
[8] Pan, C.; Luo, L.-S.; Miller, C. T., An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluids, 35, 8, 898-909, (2006) · Zbl 1177.76323
[9] Regulski, W.; Szumbarski, J.; Łaniewski-Wołłk, Ł.; Gumowski, K.; Skibiński, J.; Wichrowski, M.; Wejrzanowski, T., Pressure drop in flow across ceramic foams—a numerical and experimental study, Chem. Eng. Sci., 137, 320-337, (2015)
[10] Lee, T.; Lin, C.-L., A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys., 206, 1, 16-47, (2005) · Zbl 1087.76089
[11] Succi, S., The lattice Boltzmann equation: for fluid dynamics and beyond, (2001), Oxford university press · Zbl 0990.76001
[12] Pingen, G.; Evgrafov, A.; Maute, K., Topology optimization of flow domains using the lattice Boltzmann method, Struct. Multidiscip. Optim., 34, 6, 507-524, (2007) · Zbl 1273.76341
[13] Jaworski, A.; Müller, J.-D., Toward modular multigrid design optimisation, (Advances in Automatic Differentiation, (2008), Springer), 281-291 · Zbl 1146.76048
[14] Müller, J.-D.; Cusdin, P., On the performance of discrete adjoint CFD codes using automatic differentiation, Internat. J. Numer. Methods Fluids, 47, 8-9, 939-945, (2005) · Zbl 1134.76431
[15] J. Utke, L. Hascoët, P. Heimbach, C. Hill, P. Hovland, U. Naumann, Toward adjoinable MPI, in: Proceedings of the 10th IEEE International Workshop on Parallel and Distributed Scientific and Engineering, PDSEC’09, Rome, Italy, 2009.
[16] Pingen, G.; Evgrafov, A.; Maute, K., Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization, Comput. & Fluids, 38, 4, 910-923, (2009) · Zbl 1242.76254
[17] Makhija, D.; Pingen, G.; Yang, R.; Maute, K., Topology optimization of multi-component flows using a multi-relaxation time lattice Boltzmann method, Comput. Fluids, (2012) · Zbl 1365.76258
[18] Krause, M. J.; Thäter, G.; Heuveline, V., Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods, Comput. Math. Appl., 65, 6, 945-960, (2013) · Zbl 1319.76019
[19] Krause, M. J.; Heuveline, V., Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation, Comput. & Fluids, 80, 28-36, (2013) · Zbl 1284.76127
[20] Hekmat, M. H.; Mirzaei, M., Development of discrete adjoint approach based on the lattice Boltzmann method, Adv. Mech. Eng., (2014), URL: http://www.hindawi.com/journals/ame/2014/230854/abs/
[21] Hekmat, M. H.; Mirzaei, M., Extraction of macroscopic and microscopic adjoint concepts using a lattice Boltzmann method and discrete adjoint approach, Phys. Rev. E, 91, 1, (2015)
[22] Liu, G.; Geier, M.; Liu, Z.; Krafczyk, M.; Chen, T., Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method, Comput. Math. Appl., 68, 10, 1374-1392, (2014) · Zbl 1367.76044
[23] A. Kirk, S. Kreissl, G. Pingen, K. Maute, Lattice Boltzmann topology optimization for transient flow, in: MAESC 2011 Conference, Christian Brothers University, Memphis, Tennessee, 2011. URL: http://www.researchgate.net/profile/Georg_Pingen/publication/262314027_Lattice_Boltzmann_Topology_Optimization_for_Transient_Flow/links/0deec5374a31e013ab000000.pdf. · Zbl 1242.76052
[24] Yaji, K.; Yamada, T.; Yoshino, M.; Matsumoto, T.; Izui, K.; Nishiwaki, S., Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions, J. Comput. Phys., 274, 158-181, (2014) · Zbl 1351.76255
[25] Yonekura, K.; Kanno, Y., A flow topology optimization method for steady state flow using transient information of flow field solved by lattice Boltzmann method, Struct. Multidiscip. Optim., 51, 1, 159-172, (2014)
[26] Tekitek, M.; Bouzidi, M.; Dubois, F.; Lallemand, P., Adjoint lattice Boltzmann equation for parameter identification, Comput. Fluids, 35, 8, 805-813, (2006) · Zbl 1177.76330
[27] Tölke, J.; Krafczyk, M., Teraflop computing on a desktop PC with GPUs for 3D CFD, Int. J. Comput. Fluid Dyn., 22, 7, 443-456, (2008) · Zbl 1184.76800
[28] Kuznik, F.; Obrecht, C.; Rusaouen, G.; Roux, J.-J., LBM based flow simulation using GPU computing processor, Comput. Math. Appl., 59, 7, 2380-2392, (2010) · Zbl 1193.76112
[29] Obrecht, C.; Kuznik, F.; Tourancheau, B.; Roux, J.-J., Multi-GPU implementation of the lattice Boltzmann method, Comput. Math. Appl., 65, 2, 252-261, (2013) · Zbl 1268.76048
[30] Schönherr, M.; Kucher, K.; Geier, M.; Stiebler, M.; Freudiger, S.; Krafczyk, M., Multi-thread implementations of the lattice Boltzmann method on non-uniform grids for CPUs and gpus, Comput. Math. Appl., 61, 12, 3730-3743, (2011)
[31] M. l Dzikowski, J. Rokicki, Lattice Boltzmann method as a fine scale solver in multiscale method modeling surface texture. URL: http://www.wccm-eccm-ecfd2014.org/admin/files/fileabstract/a1093.pdf.
[32] Dzikowski, M.; Rokicki, J., Uszczelnienie czołowe: metody modelowania i analizy wpływu geometrycznej tekstury powierzchniowej, Zesz. Nauk. Politech. Świętokrzyskiej. Nauk. Tech. Z., 17, 43-49, (2012), URL: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BSW1-0093-0004
[33] Lee, K., Topology optimization of convective cooling system designs, (2012), The University of Michigan, URL: http://deepblue.lib.umich.edu/handle/2027.42/91462
[34] E.M. Dede, Multiphysics topology optimization of heat transfer and fluid flow systems, in: Proceedings of the COMSOL Users Conference, 2009. URL: http://www.comsol.se/papers/6282/download/Dede.pdf.
[35] McConnell, C.; Pingen, G., Multi-layer, pseudo 3D thermal topology optimization of heat sinks, (ASME 2012 International Mechanical Engineering Congress and Exposition, (2012), American Society of Mechanical Engineers), 2381-2392, URL: http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1751371
[36] T. Pohl, F. Deserno, N. Thurey, U. Rude, P. Lammers, G. Wellein, T. Zeiser, Performance evaluation of parallel large-scale lattice Boltzmann applications on three supercomputing architectures, in: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, 2004, p. 21.
[37] d’Humières, D., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 360, 1792, 437-451, (2002) · Zbl 1001.76081
[38] Zou, Q.; He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, 9, 6, 1591-1598, (1997) · Zbl 1185.76873
[39] Kupershtokh, A. L.; Medvedev, D. A.; Karpov, D. I., On equations of state in a lattice Boltzmann method, Comput. Math. Appl., 58, 5, 965-974, (2009), Mesoscopic Methods in Engineering and Science · Zbl 1189.76413
[40] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 3, 1815, (1993), URL: http://journals.aps.org/pre/abstract/10.1103/PhysRevE.47.1815
[41] Huang, H.; Krafczyk, M.; Lu, X., Forcing term in single-phase and shan-Chen-type multiphase lattice Boltzmann models, Phys. Rev. E, 84, 4, (2011)
[42] Svanberg, K., The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 2, 359-373, (1987) · Zbl 0602.73091
[43] Özkaya, E.; Gauger, N., Single-step one-shot aerodynamic shape optimization, (Kunisch, K.; Sprekels, J.; Leugering, G.; Tröltzsch, F., Optimal Control of Coupled Systems of Partial Differential Equations, International Series of Numerical Mathematics, vol. 158, (2009), Birkhäuser Basel), 191-204, URL: http://dx.doi.org/10.1007/978-3-7643-8923-9_11 · Zbl 1197.49046
[44] Ł. Łaniewski-Wołłk, RTemplate tool. URL: https://github.com/llaniewski/rtemplate.
[45] R Core Team, R: A Language and Environment for Statistical Computing, Vienna, Austria, 2013. URL: http://www.R-project.org/.
[46] Hascoët, L.; Pascual, V., The tapenade automatic differentiation tool: principles, model, and specification, ACM Trans. Math. Softw., 39, 3, (2013), URL: http://dx.doi.org/10.1145/2450153.2450158 · Zbl 1295.65026
[47] Gersborg-Hansen, A.; Sigmund, O.; Haber, R. B., Topology optimization of channel flow problems, Struct. Multidiscip. Optim., 30, 3, 181-192, (2005) · Zbl 1243.76034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.