×

zbMATH — the first resource for mathematics

Seismic performance of high strength reinforced concrete buildings evaluated by nonlinear pushover and dynamic analyses. (English) Zbl 1359.74273
MSC:
74K20 Plates
Software:
SeismoStruct
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 1. American Concrete Institute (ACI), ACI 363R-92: State-of-the-Art Report on High-Strength Concrete, Reported by ACI Committee 363 (Detroit: American Concrete Institute., 1997).
[2] 2. T. H. Wee, M. S. Chin and M. A. Mansur, Stress-strain relationship of high-strength concrete in compression, J. Mat. in Civil Eng.8 (2) (1996) 70-76. genRefLink(16, ’S0219455414501077BIB002’, ’10.1061%252F%2528ASCE%25290899-1561%25281996%25298%253A2%252870%2529’); genRefLink(128, ’S0219455414501077BIB002’, ’A1996UG89700002’);
[3] 3. M. A. Mansur, M. S. Chin and T. H. Wee, Stress-strain relationship of high-strength fiber concrete in compression, J. Mat. Civil Eng.11 (1) (1999) 21-29. genRefLink(16, ’S0219455414501077BIB003’, ’10.1061%252F%2528ASCE%25290899-1561%25281999%252911%253A1%252821%2529’); genRefLink(128, ’S0219455414501077BIB003’, ’000078084100004’);
[4] 4. D. Cusson and P. Paultre, Stress-strain model for confined high-strength concrete, J. Struct. Eng.121 (3) (1995) 468-477. genRefLink(16, ’S0219455414501077BIB004’, ’10.1061%252F%2528ASCE%25290733-9445%25281995%2529121%253A3%2528468%2529’); genRefLink(128, ’S0219455414501077BIB004’, ’A1995QH69200008’);
[5] 5. S. Razvi and M. Saatcioglu, Confinement model for high-strength concrete, J. Struct. Eng.125 (3) (1999) 281-289. genRefLink(16, ’S0219455414501077BIB005’, ’10.1061%252F%2528ASCE%25290733-9445%25281999%2529125%253A3%2528281%2529’); genRefLink(128, ’S0219455414501077BIB005’, ’000078655600007’);
[6] 6. D. Konstantinidis, A. Kappos and B. Izzuddin, Analytical stress-strain model for high-strength concrete members under cyclic loading, J. Struct. Eng.133 (4) (2007) 484-494. genRefLink(16, ’S0219455414501077BIB006’, ’10.1061%252F%2528ASCE%25290733-9445%25282007%2529133%253A4%2528484%2529’); genRefLink(128, ’S0219455414501077BIB006’, ’000245198800002’);
[7] 7. J. Hegger, High-strength concrete for a 186m high office building in Frankfurt, Germany, Eng. Struct.18 (11) (1996) 850-854. genRefLink(16, ’S0219455414501077BIB007’, ’10.1016%252F0141-0296%252895%252900159-X’); genRefLink(128, ’S0219455414501077BIB007’, ’A1996VK34700006’);
[8] 8. H. Aoyama, Design of Modern High-rise Reinforced Concrete Structures (Imperial College Press, London, 2001). [Abstract]
[9] 9. Y. P. Sun and K. Sakino, Experimental study on ductility improvement method for reinforced concrete columns using high-strength materials, Proc. of the Japan Concrete Institute15 (2) (1993) 719-724.
[10] 10. T. Komuro, K. Imai, H. Watanabe and T. Korenaga, Seismic properties of reinforced concrete columns using high-strength concrete with compressive strength of 150MPa, Proc. of the Japan Concrete Institute24 (2) (2002) 277-282.
[11] 11. F. Watanabe, M. Nishiyama and H. Muguruma, Strength and ductility of ultra-high strength concrete column, J. Structural and Construction Engineering, Architectural Institute of Japan446 (1993) 99-106 (in japanese).
[12] 12. S. Yamauchi, T. Ooi, O. Chiba, K. Ishikawa, S. Kikuta, N. Izumi and H. Takenaka, Experimental study on behavior of reinforced concrete columns using high-strength materials: Part 3 outline of experiment, Summaries of Technical Papers of Ann. Meeting, Architectural Institute of Japan, C-2, Structures IV, Reinforced concrete structures prestressed concrete structures masonry wall structures (2000) 191-192.
[13] 13. H. Kumagai, H. Nakazawa, H. Tsukagoshi, Y. Kurose and Y. Yabe, Development on the ultra-high-strength reinforced concrete structure: Part 2: Loading tests on the columns, Summaries of Technical Papers of Ann. Meeting, Architectural Institute of Japan, C-2, Structures IV, Reinforced concrete structures prestressed concrete structures masonry wall structures (2000) 609-610.
[14] 14. Applied Technology Council (ATC), ATC-40: Seismic Evaluation and Retrofit of Concrete Building (California, Applied Technology Council, 1996).
[15] 15. T. Komuro, A Study on the Compressive Characteristic of Ultra-High Strength Reinforced Concrete Columns, Doctoral Dissertation (Department of Architectural Engineering, Kyoto University, 2007).
[16] 16. M. Ascheim and J. P. Moehle, Shear Strength and Deformability of RC Bridge Columns Subjected to Inelastic Cyclic Displacements, UCB/EERC-92/04, Earthquake Engineering Research Center (University of California, Berkeley, 1992).
[17] 17. M. Priestley, R. Verma and Y. Xiao, Seismic shear strength of reinforced concrete columns, J. Struct. Eng.120 (8) (1994) 2310-2329. genRefLink(16, ’S0219455414501077BIB017’, ’10.1061%252F%2528ASCE%25290733-9445%25281994%2529120%253A8%25282310%2529’); genRefLink(128, ’S0219455414501077BIB017’, ’A1994NY32400004’);
[18] 18. Y. Xiao and A. Martirossyan, Seismic performance of high-strength concrete columns, J. Struct. Eng.124 (3) (1998) 241-251. genRefLink(16, ’S0219455414501077BIB018’, ’10.1061%252F%2528ASCE%25290733-9445%25281998%2529124%253A3%2528241%2529’); genRefLink(128, ’S0219455414501077BIB018’, ’000072025400003’);
[19] 19. Y. C. Sung, K. Y. Liu, C. K. Su, I. C. Tsai and K. C. Chang, A study on pushover analysis of reinforced concrete columns, J. Struct. Eng. and Mech.21 (1) (2005) 35-52. genRefLink(16, ’S0219455414501077BIB019’, ’10.12989%252Fsem.2005.21.1.035’); genRefLink(128, ’S0219455414501077BIB019’, ’000232310000003’);
[20] 20. Y. C. Sung, C. K. Su, C. W. Wu and I. C. Tsai, Performance-based damage assessment of low-rise reinforced concrete buildings, J. of the Chinese Institute of Eng.29 (1) (2006) 51-62. genRefLink(16, ’S0219455414501077BIB020’, ’10.1080%252F02533839.2006.9671098’); genRefLink(128, ’S0219455414501077BIB020’, ’000234939300005’);
[21] 21. SeismoSoft, SeismoStruct: A Computer Program for Static and Dynamic Nonlinear Analysis of Framed Structures (Online) (available from URL: http://www.seismosoft.com, 2013).
[22] 22. V. Gayathri, N. E. Shanmugam and Y. S. Choo, Concrete-filled tubular columns Part 1 – Cross-section analysis, Int. J. Struct. Stability and Dynamics4 (4) (2004) 459-478. [Abstract]
[23] 23. F. T. K. Au and Z. H. Yan, Dynamic analysis of frames with material and geometric nonlinearities based on the semirigid technique, Int. J. Struct. Stability and Dynamics8 (3) (2008) 415-438. [Abstract] genRefLink(128, ’S0219455414501077BIB023’, ’000258301600003’);
[24] 24. M. Fong and S. L. Chan, Advanced analysis of steel-concrete composite beam-columns by refined plastic hinge method, Int. J. Struct. Stability and Dynamics12 (6) (2012) 1250046. [Abstract] genRefLink(128, ’S0219455414501077BIB024’, ’000314629900003’); · Zbl 1359.74207
[25] 25. MLIT, Japanese Building Codes and Building Control System (Japanese: Ministry of Land, Infrastructure, Transport and Tourism, 2008).
[26] 26. CPAMI, Seismic Design Specifications and Commentary of Buildings (Taiwan: Construction of and Planning Agency Ministry of Interior, 2011).
[27] 27. A. K. Chopra and R. K. Goel, A modal pushover analysis procedure for estimating seismic demands for buildings, Earthquake Eng. & Struct. Dynamics31 (3) (2002) 561-582. genRefLink(16, ’S0219455414501077BIB027’, ’10.1002%252Feqe.144’); genRefLink(128, ’S0219455414501077BIB027’, ’000173870500005’);
[28] 28. T. Takeda, M. A. Sozen and N. N. Nielsen, Reinforced concrete response to simulated earthquakes, J. Struct. Division, Am. Society of Civil Eng.96 (12) (1970) 2557-2573.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.