×

zbMATH — the first resource for mathematics

Hidden attractors in dynamical systems. (English) Zbl 1359.34054
Summary: Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.

MSC:
34D45 Attractors of solutions to ordinary differential equations
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics
34D20 Stability of solutions to ordinary differential equations
70K05 Phase plane analysis, limit cycles for nonlinear problems in mechanics
34F10 Bifurcation of solutions to ordinary differential equations involving randomness
Software:
Dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Scheffer, M., Critical transitions in nature and society, (2009), Princeton University Press
[2] Lenton, T. M.; Held, H.; Kriegler, E.; Hall, J. W.; Lucht, W.; Rahmstorf, S.; Schellnhuber, H. J., Tipping elements in the earth’s climate system, Proc. Natl. Acad. Sci. USA, 105, 1786, (2008) · Zbl 1215.86004
[3] Boers, N.; Bookhagen, B.; Barbosa, H. M.J.; Marwan, N.; Kurths, J.; Marengo, J. A., Prediction of extreme floods in the eastern central andes based on a complex networks approach, Nature Commun., 5, 5199, (2014)
[4] Boers, N.; Rheinwalt, A.; Bookhagen, B.; Barbosa, H. M.J.; Marwan, N.; Marengo, J.; Kurths, J., The south American rainfall dipole: A complex network analysis of extreme events, Geophys. Res. Lett., 41, 7397, (2014)
[5] Boers, N.; Bookhagen, B.; Marwan, N.; Kurths, J.; Marengo, J., Complex networks identify spatial patterns of extreme rainfall events of the south American monsoon system, Geophys. Res. Lett., 40, 4386, (2013)
[6] Scheffer, M.; Carpenter, S.; Foley, J. A.; Folke, C.; Walker, B., Catastrophic shifts in ecosystems, Nature, 413, 591, (2001)
[7] Da Silveira, L.; Sternberg, Lobo, Savanna-forest hysteresis in the tropics, Glob. Ecol. Biogeogr., 10, 369, (2001)
[8] Hirota, M.; Holmgren, M.; Van Nes, E. H.; Scheffer, M., Global resilience of tropical forest and savanna to critical transitions, Science, 334, 232, (2011)
[9] May, R. M., Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269, 471, (1977)
[10] Babloyantz, A.; Destexhe, A., Low-dimensional chaos in an instance of epilepsy, Proc. Natl. Acad. Sci. USA, 83, 3513, (1986)
[11] Lytton, W. W., Computer modelling of epilepsy, Nat. Rev. Neurosci., 9, 626, (2008)
[12] Litt, B.; Esteller, R.; Echauz, J.; D’Alessandro, M.; Shor, R.; Henry, T.; Pennell, P.; Epstein, C.; Bakay, R.; Dichter, M.; Vachtsevanos, G., Epileptic seizures may begin hours in advance of clinical onset: a report of five patients, Neuron, 30, 51, (2001)
[13] Mc Sharry, P. E.; Smith, L. A.; Tarassenko, L., Prediction of epileptic seizures: are nonlinear methods relevant?, Nature Med., 9, 241, (2003)
[14] Erzgraber, H.; Lenstra, D.; Krauskopf, B.; Wille, E.; Peil, M.; Fisher, I.; Elsaer, W., Mutually delay-coupled semiconductor lasers: mode bifurcation scenarios, Opt. Commun., 255, 286, (2005)
[15] Kambhu, J.; Weidman, S.; Krishnam, N., New directions for understanding systemic risk: A report on a conference cosponsored by the federal reserve bank of New York and the national Academy of sciences, (2007), The National Academies Press
[16] May, R. M.; Levin, G.; Sugihara, S. A., Ecology for bankers, Nature, 451, 893, (2008)
[17] Menck, P. J.; Heitzig, J.; Kurths, J.; Schellnhuber, H. J., How dead ends undermine power grid stability, Nature Commun., 5, 3969, (2014)
[18] Kapitaniak, M.; Czolczynski, K.; Perlikowski, P.; Stefanski, A.; Kapitaniak, T., Synchronous states of slowly rotating pendula, Phys. Rep., 541, 1, (2014) · Zbl 1357.34088
[19] Kapitaniak, M.; Lazarek, M.; Nielaczny, M.; Perlikowski, P.; Kapitaniak, T., Synchronization extends the life time of the desired behavior of globally coupled systems, Sci. Rep., 4, 4391, (2014)
[20] Machowski, J.; Bumby, B. J.W. J.R., Power system dynamics: stability and control, (2008), Wiley
[21] Feudel, U., Complex dynamics in multistable systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18, 1607, (2008)
[22] Shrimali, M. D.; Prasad, A.; Ramaswamy, R.; Feudel, U., The nature of attractor basins in multistable systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18, 1675, (2008)
[23] Kraut, S.; Feudel, U., Multistability, noise, and attractor hopping: the crucial role of chaotic saddles, Phys. Rev. E, 66, (2002)
[24] Pisarchik, A. N.; Feudel, U., Control of multistability, Phys. Rep., 540, 167, (2014) · Zbl 1357.34105
[25] Chudzik, A.; Perlikowski, P.; Stefanski, A.; Kapitaniak, T., Multistability and rare attractors in van der Pol-Duffing oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 21, 1907, (2011) · Zbl 1248.34039
[26] de Souza, S. L.T.; Batista, A. M.; Caldas, I. L.; Viana, R. L.; Kapitaniak, T., Noise-induced basin hopping in a vibro-impact system, Chaos Solitons Fractal, 32, 758, (2007)
[27] Blazejczyk-Okolewska, B.; Kapitaniak, T., Co-existing attractors of impact oscillator, Chaos Solitons Fractal, 9, 1439, (1998) · Zbl 0942.37040
[28] Blazejczyk-Okolewska, B.; Kapitaniak, T., Dynamics of impact oscillator with dry friction, Chaos Solitons Fractal, 7, 1455, (1996)
[29] Kapitaniak, T., Generating strange nonchaotic trajectory, Phys. Rev. E, 47, 1408, (1993)
[30] Kapitaniak, T., Stochastic response with bifurcations to non-linear duffing’s oscillator, J. Sound Vib., 102, 440, (1985)
[31] Silchenko, A.; Kapitaniak, T.; Anishchenko, V. S., Noise-enhanced phase locking in a stochastic bistable system driven by a chaotic signal, Phys. Rev. E, 59, 1593, (1999)
[32] Scheffer, M.; Bascompte, J.; Brock, W. A.; Brovkin, V.; Carpenter, S. R.; Dakos, V.; Held, H.; van Nes, E. H.; Rietkerk, M.; Sugihara, G., Early-warning signals for critical transitions, Nature, 461, 53, (2009)
[33] Lauvdal, T.; Murray, R.; Fossen, T., Stabilization of integrator chains in the presence of magnitude and rate saturations: a gain scheduling approach, (Proc. IEEE Control and Decision Conference, Vol. 4, (1997)), 4404
[34] Nusse, H. E.; Yorke, J. A.; Kostelich, E. J., Dynamics: numerical explorations, (1982), Springer New York
[35] Parker, T. S.; Chua, L. O., Numerical algorithms for chaotic systems, (1989), Springer New York · Zbl 0692.58001
[36] Ueda, Y.; Akamatsu, N.; Hayashi, C., Computer simulations and non-periodic oscillations, Trans. Inst. Electron. Inf. Commun. Eng. Japan A, 56, 218, (1973)
[37] Kuznetsov, N. V.; Leonov, G. A.; Vagaitsev, V. I., Analytical-numerical method for attractor localization of generalized chua’s system, IFAC Proc. Vol., 4, 29, (2010), (IFAC-PapersOnline) · Zbl 1251.37081
[38] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Localization of hidden chua’s attractors, Phys. Lett. A, 375, 2230, (2011) · Zbl 1242.34102
[39] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Hidden attractor in smooth Chua systems, Physica D, 241, 1482, (2012) · Zbl 1277.34052
[40] Leonov, G. A.; Kuznetsov, N. V., Hidden attractors in dynamical systems. from hidden oscillations in Hilbert-Kolmogorov, aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23, 1330002, (2013) · Zbl 1270.34003
[41] Leonov, G. A.; Vagaitsev, V. I.; Kuznetsov, N. V., Algorithm for localizing Chua attractors based on the harmonic linearization method, Dokl. Math., 82, 663, (2010) · Zbl 1226.34050
[42] Kuznetsov, N. V.; Leonov, G. A.; Seledzhi, S. M., Hidden oscillations in nonlinear control systems, IFAC Proc. Vol., 18, 2506, (2011), (IFAC-PapersOnline)
[43] Leonov, G. A.; Kuznetsov, N. V.; Kuznetsova, O. A.; Seledzhi, S. M.; Vagaitsev, V. I., Hidden oscillations in dynamical systems, Trans. Syst. Control, 6, 54, (2011)
[44] Bragin, V. O.; Vagaitsev, V. I.; Kuznetsov, N. V.; Leonov, G. A., Algorithms for finding hidden oscillations in nonlinear systems. the aizerman and Kalman conjectures and chua’s circuits, J. Comput. Syst. Sci. Int., 50, 511, (2011) · Zbl 1266.93072
[45] Kuznetsov, N.; Kuznetsova, O.; Leonov, G.; Vagaitsev, V., Analytical-numerical localization of hidden attractor in electrical chua’s circuit, (Lecture Notes in Electrical Engineering, vol. 174, (2013)), 149 · Zbl 1308.93107
[46] Leonov, G. A.; Kuznetsov, N. V., Prediction of hidden oscillations existence in nonlinear dynamical systems: analytics and simulation, Adv. Intell. Syst. Comput., 210, 5, (2013) · Zbl 1272.93064
[47] Madan, R. N., Chua’s circuit: A paradigm for chaos, (1993), World Scientific Singapore · Zbl 0861.58026
[48] Leonov, G. A.; Kuznetsov, N. V., Algorithms for searching for hidden oscillations in the aizerman and Kalman problems, Dokl. Math., 84, 475, (2011) · Zbl 1247.34063
[49] Brezetskyi, S.; Dudkowski, D.; Kapitaniak, T., Rare and hidden attractors in van der Pol-Duffing oscillators, Eur. Phys. J. Spec. Top., 224, 1459, (2015)
[50] Menck, P. J.; Heitzig, J.; Marwan, N.; Kurths, J., How basin stability complements the linear-stability paradigm, Nat. Phys., 9, 89, (2013)
[51] Prasad, A., Existence of perpetual points in nonlinear dynamical systems and its applications, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25, 1530005, (2015) · Zbl 1309.34110
[52] Dudkowski, D.; Prasad, A.; Kapitaniak, T., Perpetual points and hidden attractors in dynamical systems, Phys. Lett. A, 379, 2591, (2015) · Zbl 1361.34067
[53] Leonov, G.; Kuznetsov, N.; Mokaev, T., Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, Eur. Phys. J. Spec. Top., 224, 1421, (2015)
[54] Hilbert, D., Mathematical problems, Bull. Amer. Math. Soc., 437, (1901-1902) · JFM 33.0976.07
[55] Bautin, N. N., On the number of limit cycles generated on varying the coefficients from a focus or centre type equilibrium state, Dokl. Akad. Nauk SSSR, 24, 668, (1939), (in Russian)
[56] Leonov, G. A.; Kuznetsova, O. A., Lyapunov quantities and limit cycles of two-dimensional dynamical systems. analytical methods and symbolic computation, Regul. Chaotic Dyn., 15, 354, (2010) · Zbl 1209.34041
[57] Kuznetsov, N. V.; Kuznetsova, O. A.; Leonov, G. A., Visualization of four normal size limit cycles in two-dimensional polynomial quadratic system, Differ. Equ. Dyn. Sys., 21, 29, (2013) · Zbl 1260.34058
[58] Nose, S., A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys., 52, 255, (1984)
[59] Hoover, W., Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A, 31, 1695, (1985)
[60] Posch, H.; Hoover, W.; Vesely, F., Canonical dynamics of the nosé oscillator: stability, order, and chaos, Phys. Rev. A, 33, 4253, (1986)
[61] Sprott, J. C., Some simple chaotic flows, Phys. Rev. E, 50, R647, (1994)
[62] Sprott, J.; Hoover, W.; Hoover, C., Heat conduction, and the lack thereof, in time-reversible dynamical systems: generalized nosé-Hoover oscillators with a temperature gradient, Phys. Rev. E, 89, (2014)
[63] Sprott, C., Strange attractors with various equilibrium types, Eur. Phys. J. Spec. Top., 224, 1409, (2015)
[64] Lei Wang, X.-S. Y., The invariant tori of knot type and the interlinked invariant tori in the nose-Hoover oscillator, Eur. Phys. J. B, 88, 78, (2015)
[65] Wei, Z., Dynamical behaviors of a chaotic system with no equilibria, Phys. Lett. A, 376, 102, (2011) · Zbl 1255.37013
[66] Jafari, S.; Sprott, J.; Golpayegani, S., Elementary quadratic chaotic flows with no equilibria, Phys. Lett. A, 377, 699, (2013)
[67] Cafagna, D.; Grassi, G., Chaos in a new fractional-order system without equilibrium points, Commun. Nonlinear Sci., 19, 2919, (2014)
[68] Chaudhuri, U.; Prasad, A., Complicated basins and the phenomenon of amplitude death in coupled hidden attractors, Phys. Lett. A, 378, 713, (2014) · Zbl 1331.34121
[69] Kuznetsov, A.; Kuznetsov, S.; Mosekilde, E.; Stankevich, N., Co-existing hidden attractors in a radio-physical oscillator system, J. Phys. A, 48, (2015) · Zbl 1316.34016
[70] Pham, V.-T.; Jafari, S.; Volos, C.; Wang, X.; Golpayegani, S., Is that really hidden? the presence of complex fixed-points in chaotic flows with no equilibria, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, 1450146, (2014) · Zbl 1304.34078
[71] Pham, V.-T.; Rahma, F.; Frasca, M.; Fortuna, L., Dynamics and synchronization of a novel hyperchaotic system without equilibrium, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, 1450087, (2014) · Zbl 1296.34113
[72] Pham, V.-T.; Volos, C.; Jafari, S.; Wei, Z.; Wang, X., Constructing a novel no-equilibrium chaotic system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, 1450073, (2014) · Zbl 1296.34114
[73] Wang, X.; Chen, G., Constructing a chaotic system with any number of equilibria, Nonlinear Dynam., 71, 429, (2013)
[74] Wang, X.; Chen, G., A chaotic system with only one stable equilibrium, Commun. Nonlinear Sci., 17, 1264, (2014)
[75] Huan, S.; Li, Q.; Yang, X.-S., Horseshoes in a chaotic system with only one stable equilibrium, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23, 1350002, (2013) · Zbl 1270.37013
[76] Jafari, S.; Sprott, J. C.; Pham, V.-T.; Golpayegani, S. M.R. H.; Jafari, A. H., A new cost function for parameter estimation of chaotic systems using return maps as fingerprints, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, 1450134, (2014) · Zbl 1302.34027
[77] Kingni, S.; Jafari, S.; Simo, H.; Woafo, P., Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form, Eur. Phys. J. Plus, 129, 76, (2014)
[78] Lao, S.-K.; Shekofteh, Y.; Jafari, S.; Sprott, J., Cost function based on Gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, 1450010, (2014) · Zbl 1284.34022
[79] Vaidyanathan, S., Anti-synchronization of Wang-Chen chaotic systems via sliding mode control, (IEEE International Conference on Computational Intelligence & Computing Research, ICCIC, (2012)), 1
[80] Wang, X.; Chen, G., Symmetrical multi-petal chaotic attractors in a 3D autonomous system with only one stable equilibrium, (Proceedings of the 2011 Fourth International Workshop on Chaos-Fractals Theories and Applications, (2011), IEEE Computer Society), 82
[81] Wei, Z.; Wang, R.; Liu, A., A new finding of the existence of hidden hyperchaotic attractors with no equilibria, Math. Comput. Simulation, 100, 13, (2014)
[82] Wei, Z.; Zhang, W., Hidden hyperchaotic attractors in a modified Lorenz-stenflo system with only one stable equilibrium, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, 1450127, (2014) · Zbl 1302.34017
[83] Molaie, M.; Jafari, S.; Sprott, J.; Golpayegani, S., Simple chaotic flows with one stable equilibrium, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23, 1350188, (2013) · Zbl 1284.34064
[84] Sommerfeld, A., Beitrage zum dynamischen ausbau der festigkeitslehre, Z. Verein. deutscher Ingr., 46, 391, (1902) · JFM 33.0830.01
[85] Evan-Iwanowski, R., Resonance oscillations in mechanical systems, (1976), Elsevier · Zbl 0337.70001
[86] Eckert, M., Arnold Sommerfeld: science, life and turbulent times 1868-1951, (2013), Springer · Zbl 1293.01005
[87] Fradkov, A.; Tomchina, O.; Tomchin, D., Controlled passage through resonance in mechanical systems, J. Sound Vib., 330, 1065, (2011)
[88] M. Kiseleva, N. Kuznetsov, G. Leonov, Hidden and self-excited attractors in electromechanical systems with and without equilibria, IFAC International Workshop on Periodic Control Systems, IFAC-PapersOnLine (2016) (in press, http://arxiv.org/pdf/1601.06909.pdf).
[89] Mihajlovic, N.; van Veggel, A.; van de Wouw, N.; Nijmeijer, H., Analysis of friction-induced limit cycling in an experimental drill-string system, J. Dyn. Syst. Meas. Control, 126, 709, (2004)
[90] de Bruin, J.; Doris, A.; van de Wouw, N.; Heemels, W.; Nijmeijer, H., Control of mechanical motion systems with non-collocation of actuation and friction: A Popov criterion approach for input-to-state stability and set-valued nonlinearities, Automatica, 45, 405, (2009) · Zbl 1158.93400
[91] Kiseleva, M.; Kuznetsov, N.; Leonov, G.; Neittaanmaki, P., Hidden oscillations in drilling system actuated by induction motor, IFAC Proc. Vol., 5, 86, (2013), (IFAC-PapersOnline)
[92] Leonov, G. A.; Kuznetsov, N. V.; Kiseleva, M. A.; Solovyeva, E. P.; Zaretskiy, A. M., Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor, Nonlinear Dynam., 77, 277, (2014)
[93] Kiseleva, M.; Kondratyeva, N.; Kuznetsov, N.; Leonov, G.; Solovyeva, E., Hidden periodic oscillations in drilling system driven by induction motor, IFAC Proc. Vol., 19, 5872, (2014), (IFAC-PapersOnline)
[94] Kiseleva, M.; Kondratyeva, N.; Kuznetsov, N.; Leonov, G., Hidden oscillations in drilling systems with salient pole synchronous motor, IFAC Proc. Vol., 48, 700, (2015), (IFAC-PapersOnline)
[95] N.V. Kuznetsov, G.A. Leonov, T.N. Mokaev, Hidden attractor in the Rabinovich system (http://arxiv.org/pdf/1504.04723v1.pdf). · Zbl 1377.34021
[96] Rabinovich, M., Stochastic autooscillations and turbulence, Usp. Fiz. Nauk, 125, 123, (1978), (in Russian)
[97] Pikovski, A. S.; Rabinovich, M. I.; Trakhtengerts, V. Y., Onset of stochasticity in decay confinement of parametric instability, Sov. Phys.—JETP, 47, 715, (1978)
[98] Leonov, G. A.; Boichenko, V. A., Lyapunov’s direct method in the estimation of the Hausdorff dimension of attractors, Acta Appl. Math., 26, 1, (1992) · Zbl 0758.58022
[99] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130, (1963) · Zbl 1417.37129
[100] Boichenko, V. A.; Leonov, G. A.; Reitmann, V., Dimension theory for ordinary diff. equat, (2005), Teubner Stuttgart
[101] Kuznetsov, N., Hidden attractors in fundamental problems and engineering models, A short survey, (Lecture Notes in Electrical Engineering, vol. 371, (2016)), 13
[102] Leonov, G.; Kuznetsov, N.; Mokaev, T., Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity, Commun. Nonlinear Sci., 28, 166, (2015)
[103] Glukhovskii, A. B.; Dolzhanskii, F. V., Three-component geostrophic model of convection in a rotating fluid, Academy of sciences, USSR, izvestiya, Atmos. Ocean. Phys., 16, 311, (1980), (in Russian)
[104] Rabinovich, M. I.; Fabrikant, A. L., Stochastic self-modulation of waves in nonequilibrium media, J. Exp. Theor. Phys., 77, 617, (1979)
[105] Danca, M.-F.; Chen, G., Bifurcation and chaos in a complex model of dissipative medium, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 14, 3409, (2004) · Zbl 1129.37314
[106] C. Meador, A comparison of two 4th-order numerical ordinary differential equation methods applied to the Rabinovich-Fabrikant equations (http://scottsarra.org/math/papers/ClydeMeador_SeniorCapstone_2009.pdf).
[107] Danca, M.-F.; Feckan, M.; Kuznetsov, N.; Chen, G., Looking more mlosely at the rabinovich-fabrikant system, Internat. J. Bifur. Chaos Appl. Sci. Engrg, 26, (2016) · Zbl 1334.34033
[108] Pham, V.-T.; Volos, C.; Gambuzza, L., A memristive hyperchaotic system without equilibrium, Sci. World J., 2014, (2014)
[109] Tahir, F.; Jafari, S.; Pham, V.-T.; Volos, C.; Wang, X., A novel no-equilibrium chaotic system with multiwing butterfly attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25, 1550056, (2015)
[110] Vaidyanathan, S.; Volos, C. K.; Pham, V., Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium, J. Eng. Sci. Technol. Rev., 8, 232, (2015)
[111] Cafagna, D.; Grassi, G., Fractional-order systems without equilibria: the first example of hyperchaos and its application to synchronization, Chin. Phys. B, 24, (2015)
[112] Leonov, G. A.; Kuznetsov, N. V., Hidden oscillations in dynamical systems. 16 hilbert’s problem, aizerman’s and kalman’s conjectures, hidden attractors in chua’s circuits, J. Math. Sci., 201, 645, (2014) · Zbl 1338.37045
[113] Leonov, G. A.; Kiseleva, M. A.; Kuznetsov, N. V.; Neittaanmäki, P., Hidden oscillations in drilling systems: torsional vibrations, J. Appl. Nonlinear Dyn., 2, 83, (2013)
[114] Sprott, J.; Wang, X.; Chen, G., Coexistence of point, periodic and strange attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23, 1350093, (2013)
[115] Kuznetsov, N.; Leonov, G., Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors, IFAC Proc. Vol., 19, 5445, (2014), (IFAC-PapersOnline)
[116] Zhusubaliyev, Z.; Mosekilde, E., Multistability and hidden attractors in a multilevel DC/DC converter, Math. Comput. Simulation, 109, 32, (2015)
[117] Wang, Z.; Sun, W.; Wei, Z.; Zhang, S., Dynamics and delayed feedback control for a 3D Jerk system with hidden attractor, Nonlinear Dynam., 82, 577, (2015) · Zbl 1348.34113
[118] Sharma, P.; Shrimali, M.; Prasad, A.; Kuznetsov, N.; Leonov, G., Controlling dynamics of hidden attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25, 1550061, (2015) · Zbl 1314.34134
[119] Dang, X.-Y.; Li, C.-B.; Bao, B.-C.; Wu, H.-G., Complex transient dynamics of hidden attractors in a simple 4D system, Chin. Phys. B, 24, (2015)
[120] Pham, V.-T.; Volos, C.; Jafari, S.; Wang, X.; Vaidyanathan, S., Hidden hyperchaotic attractor in a novel simple memristive neural network, Optoelectron. Adv. Mater., 8, 1157, (2014)
[121] Li, C.; Sprott, J. C., Coexisting hidden attractors in a 4-D simplified Lorenz system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, 1450034, (2014) · Zbl 1296.34111
[122] Wei, Z.; Moroz, I.; Liu, A., Degenerate Hopf bifurcations, hidden attractors and control in the extended sprott E system with only one stable equilibrium, Turkish J. Math., 38, 672, (2014) · Zbl 1401.34054
[123] Pham, V.-T.; Volos, C.; Vaidyanathan, S.; Le, T.; Vu, V., A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating, J. Eng. Sci. Technol. Rev., 2, 205, (2015)
[124] Chen, M.; Yu, J.; Bao, B.-C., Finding hidden attractors in improved memristor-based chua’s circuit, Electron. Lett., 51, 462, (2015)
[125] Chen, M.; Li, M.; Yu, Q.; Bao, B.; Xu, Q.; Wang, J., Dynamics of self-excited attractors and hidden attractors in generalized memristor-based chua’s circuit, Nonlinear Dynam., 81, 215, (2015)
[126] Wei, Z.; Zhang, W.; Wang, Z.; Yao, M., Hidden attractors and dynamical behaviors in an extended Rikitake system, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25, 1550028, (2015) · Zbl 1309.34009
[127] Burkin, I.; Khien, N., Analytical-numerical methods of finding hidden oscillations in multidimensional dynamical systems, Differ. Equ., 50, 1695, (2014) · Zbl 1351.37268
[128] Li, Q.; Zeng, H.; Yang, X.-S., On hidden twin attractors and bifurcation in the chua’s circuit, Nonlinear Dynam., 77, 255, (2014)
[129] Zhao, H.; Lin, Y.; Dai, Y., Hidden attractors and dynamics of a general autonomous van der Pol-Duffing oscillator, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, 1450080, (2014) · Zbl 1296.34137
[130] Pham, V.-T.; Volos, C.; Jafari, S.; Wang, X., Generating a novel hyperchaotic system out of equilibrium, Optoelectron. Adv. Mater., 8, 535, (2014)
[131] Li, C.; Sprott, J., Chaotic flows with a single nonquadratic term, Phys. Lett. A, 378, 178, (2014) · Zbl 1396.35002
[132] Jafari, S.; Sprott, J., Simple chaotic flows with a line equilibrium, Chaos Solitons Fractal, 57, 79, (2013) · Zbl 1355.37056
[133] Wei, Z.; Yu, P.; Zhang, W.; Yao, M., Study of hidden attractors, multiple limit cycles from Hopf bifurcation and boundedness of motion in the generalized hyperchaotic rabinovich system, Nonlinear Dynam., 82, 131, (2015) · Zbl 1348.34102
[134] Zhusubaliyev, Z. T.; Mosekilde, E.; Rubanov, V. G.; Nabokov, R. A., Multistability and hidden attractors in a relay system with hysteresis, Physica D, 306, 6, (2015)
[135] Bao, B.; Hu, F.; Chen, M.; Xu, Q.; Yu, Y., Self-excited and hidden attractors found simultaneously in a modified chua’s circuit, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 25, 1550075, (2015) · Zbl 1317.34097
[136] Zakrzhevsky, M.; Schukin, I.; Yevstignejev, V., Rare attractors in driven nonlinear systems with several degree of freedom, Sci. Proc. Riga Tech. Univ. Transp. Eng., 6, 79, (2007)
[137] Khalil, H. K., Nonlinear systems, (2002), Prentice Hall · Zbl 0626.34052
[138] Levinson, N., Transformation theory of non-linear diff. equat. of the second order, Ann. of Math., 45, 723, (1944)
[139] Yoshizawa, T., Stability theory by liapunov’s second method, Math. Soc. Japan, (1966) · Zbl 0144.10802
[140] G. Leonov, V. Reitman, Attraktoreingrenzung fur nichtlineare Systeme, Teubner, 1987.
[141] Yakubovich, V. A., Method of matrix unequalities in theory of nonlinear control systems stability. I. forced oscillations absolute stability, Autom. Remote Control, 25, 905, (1964)
[142] Leonov, G. A.; Burkin, I. M.; Shepelyavy, A. I., Frequency methods in oscillation theory, (1996), Kluwer · Zbl 0844.34005
[143] Rasvan, V., Three lectures on dissipativeness, (IEEE International Conference on Automation, Quality and Testing, Robotics, Vol. 1, (2006)), 167
[144] Leonov, G. A.; Reitmann, V., Das Rössler-system ist nicht dissipativ im sinne von Levinson, Math. Nachr., 129, 31, (1986) · Zbl 0612.34038
[145] Belykh, V. N., Qualitative methods of the theory of nonlinear oscillations in point systems, (1980), Gorki University Press Gorki, (in Russian) · Zbl 0529.34001
[146] Leonov, G. A., On the global stability of the Lorenz system, J. Appl. Math. Mech., 47, 861, (1983)
[147] Prasad, A., A note on topological conjugacy for perpetual points, Int. J. Nonlinear Sci., (2016), (in press, http://arxiv.org/pdf/1511.05836v1.pdf) · Zbl 1394.37034
[148] Hoover, W. G.; Hoover, C. G.; Sprott, J. C., Nonequilibrium systems: hard disks and harmonic oscillators near and far from equilibrium, Mol. Simul., 20, 1, (2015)
[149] Ott, E., Chaos in dynamical systems, (1993), Cambridge University Press · Zbl 0792.58014
[150] Schwartz, I. B.; Carr, T. W.; Triandaf, I., Tracking controlled chaos: theoretical foundations and applications, Chaos, 7, 664, (1997) · Zbl 0933.37036
[151] Triandaf, I.; Schwartz, I. B., Tracking sustained chaos: A segmentation method, Phys. Rev. E, 62, 3529, (2000)
[152] Sinha, S.; Rao, J. S.; Ramaswamy, R., Adaptive control in nonlinear dynamics, Physica D, 43, 118, (1990) · Zbl 0703.93041
[153] Pyragas, K.; Lange, F.; Letz, T.; Parisi, J.; Kittel, A., Stabilization of an unstable steady state in intracavity frequency-doubled lasers, Phys. Rev. E, 61, 3721, (2000)
[154] Pyragas, K., Continuous control of chaos by self-controlling feedback, Phys. Lett. A, 170, 421, (1992)
[155] Kim, M.-Y., (2005), University of Maryland, (Ph.D. thesis)
[156] Kim, M.-Y.; Roy, R.; Aron, J. L.; Carr, T. W.; Schwartz, I. B., Scaling behavior of laser population dynamics with time-delayed coupling: theory and experiment, Phys. Rev. Lett., 94, (2005)
[157] Kumar, P.; Prasad, A.; Ghosh, R., Stable phase-locking of an external-cavity diode laser, J. Phys. B, 41, (2008)
[158] Kumar, P.; Prasad, A.; Ghosh, R., Strange bifurcation and phase-locked dynamics in mutually coupled diode laser systems, J. Phys. B, 42, (2009)
[159] Gangwar, V. P.; Prasad, A.; Ghosh, R., Optical phase dynamics in mutually coupled diode laser systems exhibiting power synchronization, J. Phys. B, 44, (2011)
[160] Prasad, A.; Lai, Y. C.; Gavrielides, A.; Kovanis, V., Amplitude modulation in a pair of time-delay coupled external-cavity semiconductor lasers, Phys. Lett. A, 318, 71, (2003)
[161] Sackellares, J. C.; Iasemidis, L. D.; Gilmore, R. L.; Roper, S. N., Chaos in the brain?, (2000), World Scientific Singapore
[162] Iasemidis, L. D., Epileptic seizure prediction and control, IEEE Trans. Biomed. Eng., 50, 549, (2003)
[163] Christini, D. J.; Stein, K. M.; Markowitz, S. M.; Mittal, S.; Slotwiner, D. J.; Scheiner, M. A.; Iwai, S.; Lerma, B. B., Nonlinear-dynamical arrhythmia control in humans, Proc. Natl. Acad. Sci. USA, 98, 5827, (2001)
[164] Kennedy, M.; Rovatti, R.; Setti, G., Chaotic electronics in telecommunications, (2000), CRC Press
[165] Ott, E.; Grebogoi, C.; Yorke, J. A., Controlling chaos, Phys. Rev. Lett., 64, 1196, (1990) · Zbl 0964.37501
[166] Schöl, E.; Schuster, H. G., Handbook of chaos control, (2007), Wiley-VCH
[167] Rosa, E. R.; Ott, E.; Hess, M. H., Transition to phase synchronization of chaos, Phys. Rev. Lett., 80, 1642, (1998)
[168] Saxena, G.; Prasad, A.; Ramaswamy, R., Amplitude death: the emergence of stationarity in coupled nonlinear systems, Phys. Rep., 251, 205, (2012)
[169] Koseska, A.; Volkov, E., J. kurths, oscillation quenching mechanisms: amplitude vs. oscillation death, Phys. Rep., 531, 173, (2013) · Zbl 1356.34043
[170] Resmi, V.; Ambika, G.; Amritkar, R. E., Synchronized states in chaotic systems coupled indirectly through a dynamic environment, Phys. Rev. E, 81, (2010)
[171] Sharma, P. R.; Sharma, A.; Shrimali, M. D.; Prasad, A., Targeting fixed-point solutions in nonlinear oscillators through linear augmentation, Phys. Rev. E, 83, (2011)
[172] Sharma, P. R.; Shrimali, M. D.; Prasad, A.; Feudel, U., Controlling bistability by linear augmentation, Phys. Lett. A, 377, 2329, (2013)
[173] Sharma, P. R.; Singh, A.; Prasad, A.; Shrimali, M. D., Controlling dynamical behavior of drive-response system through linear augmentation, Eur. Phys. J. Spec. Top., 223, 1531, (2014)
[174] Sharma, P. R.; Shrimali, M. D.; Prasad, A.; Kuznetsov, N. V.; Leonov, G. A., Control of multistability in hidden attractors, Eur. Phys. J. Spec. Top., 224, 1485, (2015)
[175] McDonald, S. W.; Grebogi, C.; Ott, E.; Yorke, J. A., Fractal basin boundaries, Physica D, 17, 125, (1985) · Zbl 0588.58033
[176] Grebogi, C.; Kostelich, E.; Ott, E.; Yorke, J. A., Multi-dimensioned intertwined basin boundaries: basin structure of the kicked double rotor, Physica D, 25, 347, (1987)
[177] Heagy, J. F.; Carroll, T. L.; Pecora, L. M., Experimental and numerical evidence for riddled basins in coupled chaotic systems, Phys. Rev. Lett., 73, 3528, (1994)
[178] Alexander, J. C.; Yorke, J. A.; You, Z.; Kan, I., Riddled basins, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 2, 795, (1992) · Zbl 0870.58046
[179] Ott, E.; Alexander, J. C.; Kan, I.; Sommerer, J. C.; Yorke, J. A., A transition to chaotic attractors with riddled basins, Physica D, 76, 384, (1994) · Zbl 0820.58043
[180] Lai, Y.-C.; Winslow, R. L., Riddled parameter space in spatiotemporal chaotic dynamical systems, Phys. Rev. Lett., 72, 1640, (1994)
[181] Leonov, G.; Kuznetsov, N.; Yuldashev, M.; Yuldashev, R., Hold-in, pull-in, and lock-in ranges of PLL circuits: rigorous mathematical definitions and limitations of classical theory, IEEE Trans. Circuits Syst. I. Regul. Pap., 62, 2454, (2015)
[182] Kuramoto, Y.; Battogtokh, D., Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlinear Phenom. Complex Syst., 5, 380, (2002)
[183] Laing, C. R., The dynamics of Chimera states in heterogeneous Kuramoto networks, Physica D, 238, 1569, (2009) · Zbl 1185.34042
[184] Abrams, D. M.; Strogatz, S. H., Chimera states in a ring of nonlocally coupled oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16, 21, (2006) · Zbl 1101.37319
[185] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, (2004)
[186] Tinsley, M. R.; Nkomo, S.; Showalter, K., Chimera and phase-cluster states in populations of coupled chemical oscillators, Nat. Phys., 8, 662, (2012)
[187] Nkomo, S.; Tinsley, M. R., K. showalter, Chimera states in populations of nonlocally coupled chemical oscillators, Phys. Rev. Lett., 110, (2013)
[188] Hizanidis, J.; Kanas, V.; Bezerianos, A.; Bountis, T., Chimera states in networks of nonlocally coupled hindmarsh-rose neuron models, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24, 1450030, (2014) · Zbl 1296.34132
[189] Martens, E. A.; Thutupalli, S.; Fourriere, A.; Hallatschek, O., Chimera states in mechanical oscillator networks, Proc. Natl. Acad. Sci., 110, 10563, (2013)
[190] Kapitaniak, T.; Kuzma, P.; Wojewoda, J.; Czolczynski, K.; Maistrenko, Y., Imperfect Chimera states for coupled pendula, Sci. Rep., 4, 6379, (2014)
[191] Panaggio, M. J.; Abrams, D. M., Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, R67, (2015) · Zbl 1392.34036
[192] Chow, S.-N.; Mallet-Paret, J., Pattern formation and spatial chaos in lattice dynamical systems—part I, IEEE Trans. Circuits Syst. I. Regul. Pap., 42, 746, (1995)
[193] Coullet, P.; Elphick, C.; Repaux, D., Nature of spatial chaos, Phys. Rev. Lett., 58, 431, (1987)
[194] Omelchenko, I.; Maistrenko, Y.; Hovel, P.; Scholl, E., Loss of coherence in dynamical networks: spatial chaos and Chimera states, Phys. Rev. Lett., 106, (2011)
[195] Kalman, R. E., Physical and mathematical mechanisms of instability in nonlinear automatic control systems, Trans. ASME, 79, 553, (1957)
[196] Markus, L.; Yamabe, H., Global stability criteria for differential systems, Osaka Math. J., 12, 305, (1960) · Zbl 0096.28802
[197] Aizerman, M. A., On a problem concerning the stability in the large of dynamical systems, Uspekhi Mat. Nauk, 4, 187, (1949), (in Russian) · Zbl 0040.19601
[198] V.A. Pliss, Some Problems in the Theory of the Stability of Motion, Izd LGU, 1958. · Zbl 0086.07201
[199] Fitts, R. E., Two counterexamples to aizerman’s conjecture, IEEE Trans. Automat. Control, 11, 553, (1966)
[200] Barabanov, N. E., On the Kalman problem, Sib. Math. J., 29, 333, (1988) · Zbl 0713.93044
[201] Bernat, J.; Llibre, J., Counterexample to Kalman and markus-Yamabe conjectures in dimension larger than 3, Dyn. Contin. Discret. I, 2, 337, (1996) · Zbl 0889.34047
[202] Leonov, G. A.; Kuznetsov, N. V., Analytical-numerical methods for investigation of hidden oscillations in nonlinear control systems, IFAC Proc. Vol., 18, 2494, (2011), (IFAC-PapersOnline)
[203] Alli-Oke, R.; Carrasco, J.; Heath, W.; Lanzon, A., A robust Kalman conjecture for first-order plants, (Proc. IEEE Control and Decision Conference, (2012))
[204] Leonov, G. A.; Bragin, V. O.; Kuznetsov, N. V., Algorithm for constructing counterexamples to the Kalman problem, Dokl. Math., 82, 540, (2010) · Zbl 1202.93099
[205] Heath, W. P.; Carrasco, J.; de la Sen, M., Second-order counterexamples to the discrete-time Kalman conjecture, Automatica, 60, 140, (2015) · Zbl 1331.93168
[206] Andrievsky, B. R.; Kuznetsov, N. V.; Leonov, G. A.; Pogromsky, A. Y., Hidden oscillations in aircraft flight control system with input saturation, IFAC Proc. Vol., 5, 75, (2013), (IFAC-PapersOnline)
[207] Andrievsky, B. R.; Kuznetsov, N. V.; Leonov, G. A.; Seledzhi, S. M., Hidden oscillations in stabilization system of flexible launcher with saturating actuators, IFAC Proc. Vol., 19, 37, (2013), (IFAC-PapersOnline)
[208] Jafari, S.; Pham, V.-T.; Golpayegani, S.; Moghtadaei, M.; Kingni, S. T., The relationship between chaotic maps and some chaotic systems with hidden attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., (2016), private communication · Zbl 1354.37044
[209] Zelinka, I., A survey on evolutionary algorithms dynamics and its complexity—mutual relations, past, present and future, Swarm Evol. Comput., 25, 2, (2015)
[210] Zelinka, I., Evolutionary identification of hidden chaotic attractors, Eng. Appl. Artif. Intell., 50, 159, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.