Carbonaro, Andrea; Dragičević, Oliver Functional calculus for generators of symmetric contraction semigroups. (English) Zbl 1476.47015 Duke Math. J. 166, No. 5, 937-974 (2017). Summary: We prove that every generator of a symmetric contraction semigroup on a \(\sigma\)-finite measure space admits, for \(1< p< \infty\), a Hörmander-type holomorphic functional calculus on \(L^{p}\) in the sector of angle \(\phi^{\ast}_{p}=\arcsin|1-2/p|\). The obtained angle is optimal. Cited in 25 Documents MSC: 47A60 Functional calculus for linear operators 42B15 Multipliers for harmonic analysis in several variables 47D03 Groups and semigroups of linear operators 42B25 Maximal functions, Littlewood-Paley theory Keywords:functional calculus; spectral multipliers; symmetric contraction semigroups; Bellman functions; maximal functions; Littlewood-Paley theory PDF BibTeX XML Cite \textit{A. Carbonaro} and \textit{O. Dragičević}, Duke Math. J. 166, No. 5, 937--974 (2017; Zbl 1476.47015) Full Text: DOI arXiv Euclid