×

zbMATH — the first resource for mathematics

MONEDA: scalable multi-objective optimization with a neural network-based estimation of distribution algorithm. (English) Zbl 1369.90161
Summary: The extension of estimation of distribution algorithms (EDAs) to the multi-objective domain has led to multi-objective optimization EDAs (MOEDAs). Most MOEDAs have limited themselves to porting single-objective EDAs to the multi-objective domain. Although MOEDAs have proved to be a valid approach, the last point is an obstacle to the achievement of a significant improvement regarding “standard” multi-objective optimization evolutionary algorithms. Adapting the model-building algorithm is one way to achieve a substantial advance. Most model-building schemes used so far by EDAs employ off-the-shelf machine learning methods. However, the model-building problem has particular requirements that those methods do not meet and even evade. The focus of this paper is on the model-building issue and how it has not been properly understood and addressed by most MOEDAs. We delve down into the roots of this matter and hypothesize about its causes. To gain a deeper understanding of the subject we propose a novel algorithm intended to overcome the drawbacks of current MOEDAs. This new algorithm is the multi-objective neural estimation of distribution algorithm (MONEDA). MONEDA uses a modified growing neural gas network for model-building (MB-GNG). MB-GNG is a custom-made clustering algorithm that meets the above demands. Thanks to its custom-made model-building algorithm, the preservation of elite individuals and its individual replacement scheme, MONEDA is capable of scalably solving continuous multi-objective optimization problems. It performs better than similar algorithms in terms of a set of quality indicators and computational resource requirements.

MSC:
90C29 Multi-objective and goal programming
90C59 Approximation methods and heuristics in mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahn, C.W.: Advances in Evolutionary Algorithms. Theory, Design and Practice. Springer, ISBN 3-540-31758-9 (2006) · Zbl 1103.68105
[2] Ahn, C.W., Ramakrishna, R.S.: Multiobjective real-coded Bayesian optimization algorithm revisited: Diversity preservation. In: GECCO’07. Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, ACM Press, New York, NY, USA, pp. 593-600, (2007). doi:10.1145/1276958.1277079
[3] Ahn, C.W., Goldberg, D.E., Ramakrishna, R.S.: Real-coded Bayesian optimization algorithm: bringing the strength of BOA into the continuous world. In: 2004 Genetic and Evolutionary Computation (GECCO 2004), Lecture Notes in Computer Science, vol. 3102, Springer, pp. 840-851 (2004)
[4] Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996) · Zbl 0877.68060
[5] Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Institute of Physics Publishing and Oxford University Press (1997) · Zbl 0883.68001
[6] Bader, J.: Hypervolume-Based Search for Multiobjective Optimization: Theory and Methods. PhD thesis, ETH Zurich, Switzerland (2010) · Zbl 0379.62005
[7] Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. TIK Report 286, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2008)
[8] Bader, J; Zitzler, E, Hype: an algorithm for fast hypervolume-based many-objective optimization, Evolut. Comput., 19, 45-76, (2011)
[9] Bader, J., Deb, K., Zitzler, E.: Faster hypervolume-based search using Monte Carlo sampling. In: Beckmann, M., Künzi, H.P., Fandel, G., Trockel, W., Basile, A., Drexl, A., Dawid, H., Inderfurth, K., Kürsten, W., Schittko, U., Ehrgott, M., Naujoks, B., Stewart, T.J., Wallenius, J. (eds.) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, Springer, Berlin/Heidelberg, Lecture Notes in Economics and Mathematical Systems, vol. 634, pp. 313-326, (2010). doi:10.1007/978-3-642-04045-0_27
[10] Bandyopadhyay, S; Pal, SK; Aruna, B, Multiobjective GAs, quantitative indices, and pattern classification, IEEE Trans. Syst. Man Cybern. Part B Cybern., 34, 2088-2099, (2004)
[11] Basseur, M; Zitzler, E, Handling uncertainty in indicator-based multiobjective optimization, Int. J. Comput. Intell. Res., 2, 255-272, (2006)
[12] Basseur, M., Zitzler, E.: A preliminary study on handling uncertainty in indicator-based multiobjective optimization. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) Applications of Evolutionary Computing. EvoWorkshops 2006: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoINTERACTION, EvoMUSART, and EvoSTOC, Springer, Budapest, Hungary, Lecture Notes in Computer Science, vol. 3907, pp. 727-739 (2006)
[13] Bellman, R.E.: Adaptive Control Processes. Princeton University Press, Princeton (1961) · Zbl 0103.12901
[14] Benjamini, Y, Opening the box of a boxplot, Am. Stat., 42, 257-262, (1988)
[15] Berkhin, P.: Survey of Clustering Data Mining Techniques. Tech. rep., Accrue Software, San Jose, CA. http://citeseer.ist.psu.edu/berkhin02survey.html. (2002) · Zbl 1068.68139
[16] Beume, N, S-metric calculation by considering dominated hypervolume as klee’s measure problem, Evolut. Comput., 17, 477-492, (2009)
[17] Beume, N., Rudolph, G.: Faster S-metric calculation by considering dominated hypervolume as Klee’s measure problem. In: Kovalerchuk, B. (ed.) Proceedings of the Second IASTED International Conference on Computational Intelligence. IASTED/ACTA Press, pp. 233-238 (2006)
[18] Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA—a platform and programming language independent interface for search algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003, Springer. Lecture Notes in Computer Science, vol. 2632, Faro, Portugal, pp. 494-508 (2003) · Zbl 1037.68743
[19] Bosman, P.A., Thierens, D.: Adaptive variance scaling in continuous multi-objective estimation-of-distribution algorithms. In: Proceedings of the 9th annual conference on Genetic and evolutionary computation—GECCO’07. ACM Press, New York, New York, USA, p 500 (2007). doi:10.1145/1276958.1277067. http://portal.acm.org/citation.cfm?doid=1276958.1277067 · Zbl 0116.11302
[20] Bosman, P.A.N.: Design and Application of Iterated Density-Estimation Evolutionary Algorithms. PhD thesis, Institute of Information and Computing Sciences, Universiteit Utrecht, Utrecht, The Netherlands (2003)
[21] Bosman, P.A.N.: The anticipated mean shift and cluster registration in mixture-based EDAs for multi-objective optimization. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation—GECCO’10. ACM Press, New York, New York, USA, p. 351 (2010). doi:10.1145/1830483.1830549. http://portal.acm.org/citation.cfm?doid=1830483.1830549
[22] Bosman, PAN; Thierens, D, Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms, Int. J. Approx. Reason., 31, 259-289, (2002) · Zbl 1056.68114
[23] Bosman, PAN; Thierens, D, The balance between proximity and diversity in multiobjective evolutionary algorithms, IEEE Trans. Evolut. Comput., 7, 174-188, (2003)
[24] Bosman, P.A.N, Thierens, D.: The naïve MIDEA: a baseline multi-objective EA. In: Coello, C.A.C., Hernández A.A., Zitzler, E, (eds.) Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005, Springer. Lecture Notes in Computer Science, vol. 3410, Guanajuato, México, pp. 428-442 (2005) · Zbl 1109.68587
[25] Bosman, PAN; Grahl, J; Thierens, D, Benchmarking parameter-free amalgam on functions with and without noise, Evolut. Comput., 21, 445-469, (2013)
[26] Box, GEP; Muller, ME, A note on the generation of random normal deviates, Ann. Math. Stat., 29, 610-611, (1958) · Zbl 0085.13720
[27] Branke, J., Miettinen, K., Deb, K., Słowiǹski, R. (eds.) Multiobjective Optimization, Lecture Notes in Computer Science, vol. 5252. Springer, Berlin/Heidelberg (2008) · Zbl 1147.68304
[28] Brockhoff, D., Zitzler, E.: Dimensionality reduction in multiobjective optimization: the minimum objective subset problem. In: Waldmann, K.H., Stocker, U.M. (eds.) Operations Research Proceedings 2006. Springer, pp. 423-429 (2007) · Zbl 1209.90311
[29] Brockhoff, D., Zitzler, E.: Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods. In: IEEE Congress on Evolutionary Computation (CEC 2007). IEEE Press, pp. 2086-2093 (2007)
[30] Brockhoff, D., Saxena, D.K., Deb, K., Zitzler, E.: On handling a large number of objectives a posteriori and during optimization. In: Knowles, J., Corne, D., Deb, K. (eds.) Multi-Objective Problem Solving from Nature: From Concepts to Applications, Natural Computing Series. Springer, pp. 377-403 (2008). doi:10.1007/978-3-540-72964-8
[31] Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data Analysis. Wadsworth, Belmont (1983) · Zbl 0532.65094
[32] Coello C.A.C.: 20 years of evolutionary multi-objective optimization: what has been done and what remains to be done. In: Yen, G.Y., Fogel, D.B. (eds.) Computational Intelligence: Principles and Practice, IEEE Computational Intelligence Society, Vancouver, Canada, chap 4, pp. 73-88 (2006)
[33] Coello, C.A.C.: Evolutionary multiobjective optimization: a historical view of the field. IEEE Comput. Intell. Mag. 1(1), 28-36 (2006)
[34] Coello C.A.C., Lamont, G.B., Van Veldhuizen D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Genetic and Evolutionary Computation, Springer, New York. http://www.springer.com/west/home/computer/foundations?SGWID=4-156-22-173660344-0 (2007) · Zbl 1142.90029
[35] Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. Wiley, New York (1999)
[36] Cooper, G; Herskovits, E, A Bayesian method for the induction of probabilistic networks from data, Mach. Learn., 9, 309-347, (1992) · Zbl 0766.68109
[37] Corne, D.W., Knowles, J.D.: No free lunch and free leftovers theorems for multiobjective optimisation problems. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003, Springer, Faro, Portugal, Lecture Notes in Computer Science, vol. 2632, pp. 327-341 (2003)
[38] Corne, D.W., Knowles, J.D., Oates. M.J.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Schoenauer, M., Deb, K., Rudolph, G., Yao, X., Lutton, E., Merelo, J.J., Schwefel, H.P. (eds.) Proceedings of the Parallel Problem Solving from Nature VI Conference, Springer. Lecture Notes in Computer Science No. 1917, Paris, France, pp. 839-848 (2000)
[39] Corne, D.W., Jerram, N.R., Knowles, J.D., Oates, M.J.: PESA-II: region-based selection in evolutionary multiobjective optimization. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W., Voigt, H.M., Gen. M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), Morgan Kaufmann Publishers, San Francisco, California, pp. 283-290 (2001)
[40] Costa, M., Minisci, E.: MOPED: a multi-objective Parzen-based estimation of distribution algorithm for continuous problems. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003, Springer. Lecture Notes in Computer Science, vol. 2632, Faro, Portugal, pp. 282-294 (2003) · Zbl 0048.11703
[41] Costa, M., Minisci, E., Pasero, E.: An hybrid neural/genetic approach to continuous multi-objective optimization problems. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds.) Italian Workshop on Neural Neural Nets (WIRN), Springer, Lecture Notes in Computer Science, vol. 2859, pp. 61-69 (2003) · Zbl 1255.90109
[42] Darwin, C.: On the Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Struggle for Life. John Murray, London (1859)
[43] De Jong, K.A.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge (2006) · Zbl 1106.68093
[44] Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester, UK. ISBN 0-471-87339-X (2001) · Zbl 0970.90091
[45] Deb, K., Saxena, D.K.: On finding Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. Tech. Rep. 2005011, KanGAL (2005) · Zbl 0048.11703
[46] Deb, K., Saxena, D.K.: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: 2006 IEEE Conference on Evolutionary Computation (CEC’2006), IEEE Press, Piscataway, New Jersey, pp. 3352-3360 (2006)
[47] Deb, K; Pratap, A; Agarwal, S; Meyarivan, T, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evolut. Comput., 6, 182-197, (2002)
[48] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham,A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, Advanced Information and Knowledge Processing, Springer Verlag, pp. 105-145 (2004) · Zbl 1078.90567
[49] Dempster, AP; Laird, NM; Rubin, DB, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. B, 39, 1-38, (1977) · Zbl 0364.62022
[50] Ehrgott, M.: Multicriteria Optimization, Lecture Notes in Economics and Mathematical Systems, vol. 491. Springer (2005) · Zbl 1132.90001
[51] Etxeberria, R., Larrañaga, P.: Global optimization using Bayesian networks. In: Ochoa, A., Soto, M.R., Santana, R. (eds.) Proceedings of the Second Symposium on Artificial Intelligence (CIMAF-99), Habana, Cuba, pp. 151-173 (1999)
[52] Fleischer, M.: The measure of Pareto optima. Applications to multi-objective metaheuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003, Springer. Lecture Notes in Computer Science, vol. 2632, Faro, Portugal, pp. 519-533 (2003)
[53] Flentge, F, Locally weighted interpolating growing neural gas, IEEE Trans. Neural Netw., 17, 1382-1393, (2006)
[54] Fonseca, C., Fleming, P.: Multiobjective Genetic Algorithms. In: IEE Colloquium on Genetic Algorithms for Control Systems Engineering, IEE, pp. 6/1-6/5 (1993)
[55] Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Forrest, S. (ed.) Proceedings of the FifthInternational Conference on Genetic Algorithms, University of Illinois at Urbana-Champaign, Morgan Kauffman Publishers, San Mateo, California, pp. 416-423 (1993) · Zbl 0116.11302
[56] Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE Congress on Evolutionary Computation (CEC’2006), pp. 1157-1163 (2006)
[57] Fritzke, B, Fast learning with incremental RBF networks, Neural Process. Lett., 1, 2-5, (1994)
[58] Fritzke, B; Tesauro, G (ed.); Touretzky, DS (ed.); Leen, TK (ed.), A growing neural gas network learns topologies, No. 7, 625-632, (1995), Cambridge
[59] Fritzke, B.: Incremental neuro-fuzzy systems. In: Application of Soft Computing, SPIE International Symposium on Optical Science, Engineering and Instrumentation, San Diego, CA (1997)
[60] Grünwald, P.D.: The Minimum Description Length Principle (Adaptive Computation and Machine Learning). The MIT Press (2007) · Zbl 1079.68596
[61] Hartigan, J.A.: Clustering Algorithms. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1975) · Zbl 0372.62040
[62] Horn, J., Nafpliotis, N., Goldberg, D.E.: A Niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence, IEEE Service Center, Piscataway, New Jersey, vol. 1, pp. 82-87 (1994)
[63] Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello C.A.C., Hernández Aguirre, A., Zitzler, E. (eds.) Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005, Springer. Lecture Notes in Computer Science, vol. 3410, Guanajuato, México, pp. 280-295 (2005) · Zbl 1109.68603
[64] Huband, S; Hingston, P; Barone, L; While, L, A review of multiobjective test problems and a scalable test problem toolkit, IEEE Trans. Evolut. Comput., 10, 477-506, (2006) · Zbl 1109.68603
[65] Ishibuchi, H; Murata, T, Multi-objective genetic local search algorithm and its application to flowshop scheduling, IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., 28, 392-403, (1998)
[66] Jain, AK; Murty, MN; Flynn, PJ, Data clustering: a review, ACM Comput. Surv., 31, 264-323, (1999)
[67] Kambhatla, N; Leen, TK, Dimension reduction by local principal component analysis, Neural Comput., 9, 1493-1516, (1997)
[68] Karshenas, H; Santana, R; Bielza, C; Larranaga, P, Multiobjective estimation of distribution algorithm based on joint modeling of objectives and variables, IEEE Trans. Evolut. Comput., 18, 519-542, (2014)
[69] Khan, N.: Bayesian Optimization Algorithms for Multiobjective and Hierarchically Difficult Problems. Master’s thesis, Graduate College of the University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (2003)
[70] Khan, N., Goldberg, D.E., Pelikan, M.: Multi-objective Bayesian optimization algorithm. In: Langdon, W., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A., Miller, J., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2002), Morgan Kaufmann Publishers, San Francisco, California, p. 684 (2002)
[71] Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003, Springer. Lecture Notes in Computer Science, vol. 2632, Faro, Portugal, pp. 376-390 (2003) · Zbl 1036.90541
[72] Knowles, J., Corne, D.: Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) Proceedings 4th International Conference Evolutionary Multi-Criterion Optimization (EMO 2007), Springer, Berlin/Heidelberg, pp. 757-771 (2007). doi:10.1007/978-3-540-70928-2_57
[73] Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Switzerland, revised version (2006)
[74] Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers. TIK Report 214, Computer Engineering and Networks Laboratory (TIK), ETH Zurich (2006) · Zbl 1068.68139
[75] Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD thesis, The University of Reading, Department of Computer Science, Reading, UK (2002)
[76] Knowles, J.D., Corne, D.W.: The Pareto archived evolution strategy: a new baseline algorithm for multiobjective optimisation. In: 1999 Congress on Evolutionary Computation, IEEE Service Center, Washington, D.C., pp. 98-105 (1999)
[77] Knowles, JD; Corne, DW, Approximating the nondominated front using the Pareto archived evolution strategy, Evolut. Comput., 8, 149-172, (2000)
[78] Kruskal, WH; Wallis, WA, Use of ranks in one-criterion analysis of variance, J. Am. Stat. Assoc., 47, 583-621, (1952) · Zbl 0048.11703
[79] Larrañaga, P.: A review on estimation of distribution algorithms. In: Larrañaga, P., Lozano, J.A. (eds.) Estimation of Distribution Algorithms. A New Tool forEvolutionary Computation, Kluwer Academic Publishers, Boston/Dordrecht/London, pp. 55-98 (2002)
[80] Larrañaga, P., Lozano, J.A. (eds.) Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Genetic Algorithms and Evolutionary Computation, Kluwer Academic Publishers, Boston/Dordrecht/London (2002) · Zbl 0979.00024
[81] Laumanns, M., Ocenasek, J.: Bayesian optimization algorithms for multi-objective optimization. In: Merelo Guervós JJ, Adamidis P, Beyer HG, nas JLFV, Schwefel HP (eds.) Parallel Problem Solving from Nature-PPSN VII, Springer-Verlag. Lecture Notes in Computer Science No. 2439, Granada, Spain, pp. 298-307 (2002)
[82] Levon, J.: OProfile manual. Victoria University of Manchester. http://oprofile.sourceforge.net/ (2004)
[83] Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E.: (eds) Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms. Springer, Berlin (2006) · Zbl 1089.68121
[84] MacQueen, J.: Some methods for classification and analysis ofmultivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical, vol 1, pp. 281-297 (1967)
[85] Mann, HB; Whitney, DR, On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat., 18, 50-60, (1947) · Zbl 0041.26103
[86] Martí, L., García, J., Berlanga, A., Molina, J.M.: A cumulative evidential stopping criterion for multiobjective optimization evolutionary algorithms. In: Thierens, D., Deb, K., Pelikan, M., Beyer, H.G., Doerr, B., Poli, R., Bittari, M. (eds.) GECCO’09: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, ACM Press, New York, p. 911, (2007). doi:10.1145/1276958.1277141. http://portal.acm.org/citation.cfm?doid=1276958.1277141
[87] Martí, L., García, J., Berlanga, A., Molina, J.M.: Introducing MONEDA: scalable multiobjective optimization with a neural estimation of distribution algorithm. In: GECCO’08: 10th Annual Conference on Genetic and Evolutionary Computation, ACM Press, New York, NY, USA, pp. 689-696 (2008). doi:10.1145/1389095.1389230
[88] Martí, L., García, J., Berlanga, A., Molina, J.M.: Model-building algorithms for multiobjective EDAs: directions for improvement. In: 2008 IEEE Conference on Evolutionary Computation (CEC), Part of 2008 IEEE World Congress on Computational Intelligence (WCCI 2008), IEEE Press, Piscataway, New Jersey, pp. 2848-2855 (2008). doi:10.1109/CEC.2008.4631179. http://ieeexplore.ieee.org/iel5/4625778/4630767/04631179.pdf?tp=&arnumber=4631179&isnumber=4630767
[89] Martí, L., García, J., Berlanga, A., Molina, J.M.: An approach to stopping criteria for multi-objective optimization evolutionary algorithms: The MGBM criterion. In: 2009 IEEE Conference on Evolutionary Computation (CEC 2009), IEEE Press, Piscataway, New Jersey, pp. 1263-1270 (2009). doi:10.1109/CEC.2009.4983090
[90] Martí, L., García, J., Berlanga, A., Molina, J.M.: Solving complex high-dimensional problems with the multi-objective neural estimation of distribution algorithm. In: Raidl, G., Alba, E., Bacardit, J., Bates Congdon, C., Beyer, H.G., Birattari, M., Blum, C., Bosman, P.A.N., Corne, D., Cotta, C., Di Penta, M., Doerr, B., Drechsler, R., Ebner, M., Grahl, J., Jansen, T., Knowles, J., Lenaerts, T., Middendorf, M., Miller, J.F., O’Neill, M., Poli, R., Squillero, G., Stanley, K., Stützle, T., van Hemert, J. (eds.) GECCO 2009: 11th Annual Conference on Genetic and Evolutionary Computation, ACM Press, New York, NY, USA, pp. 619-626 (2009). doi:10.1145/1569901.1569987. http://portal.acm.org/citation.cfm?id=1569901.1569987
[91] Martí, L., García, J., Berlanga, A., Coello, C.A.C., Molina, J.M.: On Current Model-building Methods for Multi-objective Estimation of Distribution Algorithms: Shortcommings and Directions for Improvement. Tech. Rep. GIAA2010E001, Grupo de Inteligencia Artificial Aplicada, Universidad Carlos III de Madrid, Colmenarejo, Spain. http://www.giaa.inf.uc3m.es/miembros/lmarti/model-building (2010)
[92] Martinetz, T.M.: Competitive Hebbian learning rule forms perfectly topology preserving maps. In: International Conference on Artificial Neural Networks (ICANN’93), Springer-Verlag, Amsterdam, pp. 427-434 (1993)
[93] Martinetz, TM; Berkovich, SG; Shulten, KJ, Neural-gas network for vector quantization and its application to time-series prediction, IEEE Trans. Neural Netw., 4, 558-560, (1993)
[94] Massey, FJ, The Kolmogorov-Smirnov test for goodness of fit, J. Am. Stat. Assoc., 46, 68-78, (1951) · Zbl 0042.14403
[95] Miettinen, K.: Nonlinear Multiobjective Optimization, International Series in Operations Research & Management Science, vol. 12. Kluwer, Norwell, MA (1999) · Zbl 0949.90082
[96] Mühlenbein, H; Mahnig, T, FDA—a scalable evolutionary algorithm for the optimization of additively decomposed functions, Evolut. Comput., 7, 353-376, (1999)
[97] Ocenasek, J.: Parallel Estimation of Distribution Algorithms. PhD thesis, Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic (2002)
[98] Ocenasek, J., Schwarz, J.: Estimation of distribution algorithm for mixed continuous-discrete optimization problems. In: 2nd Euro-International Symposium on Computational Intelligence, pp. 227-232 (2002)
[99] Pareto, V.: Cours D’Économie Politique. F. Rouge, Lausanne(1896)
[100] Parzen, E, On estimation of a probability density function and mode, Ann. Math. Stat., 33, 1065-1076, (1962) · Zbl 0116.11302
[101] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988) · Zbl 0746.68089
[102] Pelikan, M.: Hierarchical Bayesian Optimization Algorithm. Toward a New Generation of Evolutionary Algorithms. Studies in Fuzziness and Soft Computing, Springer (2005) · Zbl 1107.68084
[103] Pelikan, M., Goldberg, D.E.: Hierarchical bayesian optimizationalgorithm. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications, Studies in Computational Intelligence, Springer-Verlag, pp. 63-90 (2006) · Zbl 1147.90004
[104] Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian optimization algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO-1999, Morgan Kaufmann Publishers, San Francisco, CA, Orlando, FL, vol. I, pp. 525-532 (1999)
[105] Pelikan, M., Goldberg, D.E., Lobo, F. A survey of optimization by building and using probabilistic models. IlliGAL Report No. 99018, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL (1999) · Zbl 0988.90052
[106] Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: Hierarchical problem solving by the Bayesian optimization algorithm. IlliGAL Report No. 2000002, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL (2000)
[107] Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective hBOA, clustering, and scalability. In: GECCO’05: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, ACM Press, New York, NY, USA, pp. 663-670 (2005). doi:10.1145/1068009.1068122
[108] Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications. Studies in Computational Intelligence, Springer (2006) · Zbl 1118.90002
[109] Pelikan, M., Sastry, K., Goldberg, D.E. Multiobjective estimation ofdistribution algorithms. In: Pelikan, M., Sastry, K., Cantú-Paz, E. (eds.) Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications, Studies in Computational Intelligence, Springer-Verlag, pp. 223-248 (2006) · Zbl 1165.90632
[110] Praditwong, K., Yao, X.: How well do multi-objective evolutionary algorithms scale to large problems. In: 2007 IEEE Congress on Evolutionary Computation (CEC 2007), IEEE Press, Piscataway, New Jersey, pp. 3959-3966 (2007). doi:10.1109/CEC.2007.4424987
[111] Purshouse, R.C.: On the Evolutionary Optimisation of Many Objectives. PhD thesis, Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, UK (2003)
[112] Purshouse, R.C., Fleming, P.J.: Evolutionary multi-objective optimisation: an exploratory analysis. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC’2003), IEEE Press, Canberra, Australia, vol. 3, pp. 2066-2073 (2003)
[113] Purshouse, RC; Fleming, PJ, On the evolutionary optimization of many conflicting objectives, IEEE Trans. Evolut. Comput., 11, 770-784, (2007)
[114] Qin, AK; Suganthan, PN, Robust growing neural gas algorithm with application in cluster analysis, Neural Netw., 17, 1135-1148, (2004) · Zbl 1079.68596
[115] Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (1981) · Zbl 0529.68076
[116] Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, pp. 93-100 (1985)
[117] Schervish, M.J.: Theory of Statistics, 2nd edn. Springer Series in Statistics, Springer, Berlin/Heidelberg (1997)
[118] Schütze, O., Mostaghim, S., Dellnitz, M., Teich, J.: Covering Pareto sets by multilevel evolutionary subdivision techniques. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003, Springer. Lecture Notes in Computer Science, vol. 2632, Faro, Portugal, pp. 118-132 (2003) · Zbl 1036.90552
[119] Schwarz, G, Estimating the dimension of a model, Ann. Stat., 6, 461-464, (1978) · Zbl 0379.62005
[120] Shapiro, J.: Diversity loss in general estimation of distribution algorithms. In: Parallel Problem Solving from Nature—PPSN IX, pp. 92-101 (2006). doi:10.1007/11844297_10
[121] Srinivas, N; Deb, K, Multiobjective optimization using nondominated sorting in genetic algorithms, Evolut. Comput., 2, 221-248, (1994)
[122] Stewart, T.J., Bandte, O., Braun, H., Chakraborti, N., Ehrgott, M., Göbelt, M., Jin, Y., Nakayama, H., Poles, S., Di Stefano. D.: Real-world applications of multiobjective optimization. In: Branke, J., Miettinen, K., Deb, K., Słowiǹski, R. (eds.) Multiobjective Optimization, Lecture Notes in Computer Science, vol. 5252, Springer-Verlag, Berlin/Heidelberg, pp. 285-327 (2008)
[123] Thierens, D.: Convergence time analysis for the multi-objective counting ones problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization. Second International Conference, EMO 2003, Springer. Lecture Notes in Computer Science, vol. 2632, Faro, Portugal, pp. 355-364 (2003)
[124] Thierens, D., Bosman, P.A.N.: Multi-objective mixture-based iterated density estimation evolutionary algorithms. In: Spector, L., Goodman, E., Wu, A., Langdon, W., Voigt, H., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2001, Morgan Kaufmann Publishers, San Francisco, CA, pp. 663-670 (2001)
[125] Thierens, D., Bosman, P.A.N.: Multi-objective optimization with iterated density estimation evolutionary algorithms using mixture models. In: Proceedings of the Third International Symposium on Adaptive Systems-Evolutionary Computation and Probabilistic Graphical Models, Institute of Cybernetics, Mathematics and Physics, Havana, Cuba, pp. 129-136 (2001) · Zbl 1020.90044
[126] Timm, H; Borgelt, C; Doring, C; Kruse, R, An extension to possibilistic fuzzy cluster analysis, Fuzzy Sets Syst., 147, 3-16, (2004) · Zbl 1068.68139
[127] Vapnik, VN, An overview of statistical learning theory, IEEE Trans. Neural Netw., 10, 988-999, (1999)
[128] Wang, H., Zhang, Q., Jiao, L., Yao, X.: Regularity model for noisy multiobjective optimization. IEEE Trans. Cybern. PP(99), pp. 1-1 (2015). doi:10.1109/TCYB.2015.2459137
[129] While, L., Bradstreet, L., Barone, L., Hingston, P.: Heuristics for optimising the calculation of hypervolume for multi-objective optimization problems. In: 2005 IEEE Congress on Evolutionary Computation (CEC’2005), IEEE Service Center, Edinburgh, Scotland, vol. 3, pp. 2225-2232 (2005)
[130] While, L; Hingston, P; Barone, L; Huband, S, A faster algorithm for calculating hypervolume, IEEE Trans. Evolut. Comput., 10, 29-38, (2006)
[131] Wilcoxon, F, Individual comparisons by ranking methods, Biom. Bull., 1, 80-83, (1945)
[132] Xu, R; Wunsch, D, Survey of clustering algorithms, IEEE Trans. Neural Netw., 16, 645-678, (2005)
[133] Xu, R., Wunsch II, D.: Clustering, Illustrated edn. IEEE Press Series on Computational Intelligence, Wiley, IEEE Press, New York (2008)
[134] Yuan, B., Gallagher, M.: On the importance of diversity maintenance in estimation of distribution algorithms. In: GECCO’05: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, ACM Press, New York, NY, USA, pp. 719-726 (2005). doi:10.1145/1068009.1068129
[135] Zhang, Q; Zhou, A; Jin, Y, RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm, IEEE Trans. Evolut. Comput., 12, 41-63, (2008)
[136] Zhou, A., Zhang, Q., Jin, Y., Tsang, E., Okabe, T.: A model-based evolutionary algorithm for bi-objective optimization. In: 2005 IEEE Congress on Evolutionary Computation (CEC’2005), IEEE Service Center, Edinburgh, Scotland, vol. 3, pp. 2568-2575 (2005)
[137] Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X. (ed.) Parallel Problem Solving from Nature—PPSN VIII, Springer-Verlag, Berlin/Heidelberg, Lecture Notes in Computer Science, vol. 3242, pp. 832-842 (2004)
[138] Zitzler, E., Thiele, L.: An Evolutionary Algorithm for Multiobjective Optimization: The Strength Pareto Approach. Tech. Rep. 43, Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland (1998)
[139] Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms on test functions of different difficulty. In: Wu, A.S. (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference. Workshop Program, Orlando, Florida, pp. 121-122 (1999)
[140] Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95-100(2002) · Zbl 1056.68114
[141] Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., Grunert da Fonseca, V.: Why quality assessment of multiobjective optimizers is difficult. In: Langdon, W.B., Cantú-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K., Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M., Schultz, A., Miller, J., Burke, E., Jonoska, N. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2002), Morgan Kaufmann Publishers, San Francisco, California, pp. 666-673 (2002)
[142] Zitzler, E; Thiele, L; Laumanns, M; Fonseca, CM; Grunert da Fonseca, V, Performance assessment of multiobjective optimizers: an analysis and review, IEEE Trans. Evolut. Comput., 7, 117-132, (2003)
[143] Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of pareto-compliant indicators via weighted integration. In: Obayashi, S., et al. (eds.) Conference on Evolutionary Multi-Criterion Optimization (EMO 2007), Springer, Berlin, LNCS, vol. 4403, pp. 862-876 (2007)
[144] Zitzler, E., Knowles, J., Thiele, L.: Quality assessment of pareto set approximations. In: Branke, J., Miettinen, K., Deb, K., Słowiǹski, R. (eds.) Multiobjective Optimization, Lecture Notes in Computer Science, vol. 5252, Springer-Verlag, Berlin/Heidelberg, pp. 373-404 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.