zbMATH — the first resource for mathematics

Construction of normal bases in cyclic extensions of a field. (English) Zbl 0671.12006
The author gives first a short proof of the existence of a normal basis in the case of cyclic extensions, valid both for finite and infinite ground fields, and then gives an effective method to find all such bases. Several examples illustrate this procedure.
Reviewer: W.Narkiewicz

12F10 Separable extensions, Galois theory
12-04 Software, source code, etc. for problems pertaining to field theory
Full Text: EuDML
[1] Albert A. A.: Fundamental Concepts of Higher Algebra. The Univ. of Chicago Press, 1956. · Zbl 0073.00802
[2] Berlekamp E. R.: Algebraic Coding Theory. Mc. Graw-Hill Company, New York, 1968. · Zbl 0988.94521
[3] Jacobson N.: Lectures in Abstract Algebra. D. Van Nostrand Comp., New York, Volume III, 1964. · Zbl 0124.27002
[4] Lidl R., Niederreiter H.: Finite Fields. Addison-Wesley Publ. Comp., Reading, Massachusetts, 1983. · Zbl 0554.12010
[5] Ore O.: Contributions to the theory of finite fields. Trans. Amer. Mat. Soc. 36 (1934), 243-274. · Zbl 0009.10003
[6] Rédei L.: Algebra. Akad. Verlagsgesellschaft, Leipzig 1959.
[7] Schwarz Š.: On the reducibility of binomial congruences and the bound of the least integer belonging to a given exponent (mod p). Časopis pěst. mat. fys. 74 (1949), 1-16. · Zbl 0033.16101
[8] Schwarz Š.: On the reducibility of polynomials over a finite field. Quart. J. of Math. (Oxford) (2) 7 (1956), 110-124. · Zbl 0071.01703
[9] Van der Waerden B. L.: Algebra I (1971) and II (1967). · Zbl 0192.33002
[10] Conway J. H.: A tabulation of some information concerning finite fields. Computers in Mathematical Research, pp. 37-50, North-Holland, Amsterdam, 1968. · Zbl 0186.07602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.