×

Chain homotopy projections. (English) Zbl 0671.18005

If \(C_*\) is a finitely generated complex of free modules over a ring R, and p an endomorphism with \(p^ 2\) chain homotopic to p then, up to homotopy, p is a projection onto a subcomplex \(D_*\) of projective modules, which defines a class x in \(K_ 0(R)\) depending only on p and the chain homotopy. The authors develop an abstract theory of the construction of x, and describe relations with earlier work by several authors, including the topological case when p is induced by a self-map of a finite CW-complex. Here complete results are only obtained when p preserves a base point and induces the identity on the fundamental group. There is a direct construction of a module with class x (due to Ranicki); and the theory simplifies in the important case when p(1-p) is nilpotent.
Reviewer: C.T.C.Wall

MSC:

18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
57Q12 Wall finiteness obstruction for CW-complexes
18G05 Projectives and injectives (category-theoretic aspects)
Full Text: DOI

References:

[1] Bass, H., Algebraic \(K\)-theory (1968), Benjamin: Benjamin New York · Zbl 0174.30302
[2] Bass, H.; Heller, A.; Swan, R., The Whitehead group of a polynomial extension, Publ. Math. I.H.E.S., 22, 61-80 (1964) · Zbl 0248.18026
[3] Dydak, J., A simple proof that pointed, connected FANR-spaces are regular fundamental retracts of ANR’s, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 25, 55-62 (1977) · Zbl 0357.55018
[4] Ferry, S., A simple-homotopy approach to the finiteness obstruction, (Proceedings, 1981 Dubrovnik Conf. on Shape Theory. Proceedings, 1981 Dubrovnik Conf. on Shape Theory, Lecture Notes in Mathematics, Vol.870 (1981), Springer-Verlag: Springer-Verlag New York/Berlin), 73-81 · Zbl 0472.57014
[6] Freyd, P., Splitting homotopy idempotents, (Proceedings, 1965 La Jolla Conference on Categorical Algebra (1966), Springer-Verlag: Springer-Verlag New York/Berlin), 173-176 · Zbl 0195.52902
[8] Hastings, H.; Heller, A., Splitting homotopy idempotents, (Proceedings, 1981 Dubrovnik Conf. on Shape Theory. Proceedings, 1981 Dubrovnik Conf. on Shape Theory, Lecture Notes in Mathematics, Vol. 870 (1981), Springer-Verlag: Springer-Verlag New York/Berlin), 23-36 · Zbl 0471.55008
[9] Hastings, H.; Heller, A., Splitting homotopy idempotents of finite-dimensional CW complexes, (Proc. Amer. Math. Soc., 85 (1982)), 619-622 · Zbl 0513.55011
[10] Jacobson, N., The Structure of Rings, (Amer. Math. Soc. Colloq. Publ. (1956), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · JFM 65.1131.01
[11] Kato, T., Perturbation Theory of Linear Operators (1966), Springer: Springer New York · Zbl 0148.12601
[12] Lam, K. Y.; Ranicki, A.; Smith, L., Jordan normal form projections, Arch. Math., 50, 113-117 (1988) · Zbl 0636.15005
[13] Lück, W., Eine allgemeine algebraische Beschreibung des Transfers für Faserungen auf projektiven Klassengruppen und Whiteheadgruppen, Ph.D. thesis (1984), Göttingen
[14] Lück, W., The transfer maps induced in the algebraic \(K_0\)- and \(K_1\)-groups by a fibration, I, Math. Scand., 59, 93-121 (1986) · Zbl 0589.57020
[15] Mather, M., Counting homotopy types of manifolds, Topology, 4, 93-94 (1965) · Zbl 0134.42702
[16] Munkholm, H.; Ranicki, A., The projective class group transfer induced by an \(S^1\)-bundle, (Proceedings, 1981 London, Ontario Topology Conference, Canadian Math. Conf. Proc. 2 (1982)), 461-484, part 2 · Zbl 0564.57018
[17] Pedersen, E. K., \(k_{−i}\)-invariants of chain complexes, (Proceedings, 1982 Leningrad Topology Conference. Proceedings, 1982 Leningrad Topology Conference, Lecture Notes in Mathematics, Vol. 1060 (1984), Springer-Verlag: Springer-Verlag New York/Berlin), 174-186 · Zbl 0574.55002
[18] Ranicki, A., The algebraic theory of finiteness obstruction, Math. Scand., 57, 105-126 (1985) · Zbl 0589.57018
[19] Ranicki, A., The algebraic and geometric splittings of the \(K\)- and \(L\)-groups of polynomial extensions, (Proceedings, 1985 Poznań Conf. on Transformation Groups. Proceedings, 1985 Poznań Conf. on Transformation Groups, Lecture Notes in Mathematics, Vol. 1217 (1986), Springer-Verlag: Springer-Verlag New York/Berlin), 321-364 · Zbl 0615.57017
[20] Ranicki, A., The algebraic theory of torsion. II. Products, K-theory, 1, 115-170 (1987) · Zbl 0591.18007
[22] Swan, R. G., Algebraic \(K\)-theory, (Lecture Notes in Mathematics, Vol. 76 (1968), Springer-Verlag: Springer-Verlag New York/Berlin) · Zbl 0193.34601
[23] Wedderburn, J. H.M, Lectures on Matrices, (Amer. Math. Soc. Colloq. Publ., Vol. XVII (1934), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0010.09904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.