Zhu, Xiping Multiple entire solutions of a semilinear elliptic equation. (English) Zbl 0671.35023 Nonlinear Anal., Theory Methods Appl. 12, No. 11, 1297-1316 (1988). By the concentration-compactness principle the author proves the existence of a second entire solution to the semilinear elliptic equation \[ -\Delta u+u=q(x)| u|^{\gamma -1}u\quad on\quad {\mathbb{R}}^ n, \] \(1<\gamma <(n+2)/(n-2)\), if \(n\geq 5\), \(q(x)\geq q_ 0\geq 0\), \(\lim_{x\to \infty} q(x)=q_ 0\) and \(q(x)-q_ 0\geq c| x|^{- m}\) for \(| x|\) large in addition to the known positive solution given e.g. by P. L. Lions [Ann. Inst. Henri Poincaré, Anal. Non Linéaire 1, 109-145 (1984; Zbl 0541.49009) and 223-283 (1984)] or E. S. Noussair and C. A. Swanson [Hiroshima Math. J. 15, 127-140 (1985; Zbl 0575.35025)]. Compare also the totally different technique of E. S. Noussair [Bull. Lond. Math. Soc. 19, 443-448 (1987; Zbl 0633.35025)] where the existence of a second positive solution for the slightly different equation \(-\Delta u=q(x)u^{\gamma}\) is proved. Reviewer: M.Wiegner Cited in 29 Documents MSC: 35J60 Nonlinear elliptic equations 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 35J20 Variational methods for second-order elliptic equations Keywords:concentration-compactness principle; existence; entire solution; semilinear; positive solution Citations:Zbl 0541.49009; Zbl 0575.35025; Zbl 0633.35025 PDF BibTeX XML Cite \textit{X. Zhu}, Nonlinear Anal., Theory Methods Appl. 12, No. 11, 1297--1316 (1988; Zbl 0671.35023) Full Text: DOI References: [1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101 [2] Berestycki, H.; Lions, P. L., Nonlinear scalar field equations I, II, Archs ration. Mech. Analysis, 82, 313-376 (1983) [3] Cerami, G.; Solomini, S.; Struwe, M., Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Analysis, 69, 289-306 (1986) · Zbl 0614.35035 [4] Ding, W. Y.; Ni, W. M., On the existence of positive entire solutions of semilinear elliptic equations, Archs ration. Mech. Analysis, 91, 283-308 (1986) · Zbl 0616.35029 [5] Gidas, B.; Ni, W. M.; Nirenberg, L., Symmetry of positive solutions of nonlinear elliptic equations in \(R^N\), Adv. Math. Suppl. Studies, 7A, 369-402 (1981) [6] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer: Springer New York · Zbl 0691.35001 [7] Hofer, H., Variational and topological methods in partially ordered Hilbert spaces, Math. Annln, 261, 493-514 (1982) · Zbl 0488.47034 [8] Kato, T., Growth properties of solutions of the reduced wave equation with a variable coefficient, Communs pure appl. Math., 12, 403-425 (1959) · Zbl 0091.09502 [9] Lions, P. L., The concentration-compactness principle in the calculus of variations, Ann. Inst. H. Poincaré Analyse nonlinéaire, 1, 109-145 (1984), The locally compact case, part 1 · Zbl 0541.49009 [10] Lions, P. L., The concentration-compactness principle in the calculus of variations, Ann. Inst. H. Poincaré Analyse nonlinéaire, 1, 223-283 (1984), The locally compact case, part 2 · Zbl 0704.49004 [11] Miranda, C., Un’ osservazione sul teorema di Brouwer, Boll. Un. mat. ital. Ser. II, Ann. II u. \(1\), XIX, 5-7 (1940) · JFM 66.0217.01 [12] Nehari, Z., On a nonlinear differential equation arising in nuclear physics, Proc. R. Irish. Acad., 62, 117-135 (1963) · Zbl 0124.30204 [13] Strauss, W., Existence of solitary waves in higher dimensions, Communs math. Phys., 55, 149-162 (1977) · Zbl 0356.35028 [14] Yang, J. F.; Zhu, X. P., On the existence of nontrivial solutions of a quasilinear elliptic boundary value problems for unbounded domains, Acta math. Sci., 7, 341-359 (1987) · Zbl 0674.35030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.