×

zbMATH — the first resource for mathematics

Nonlinear prediction of chaotic time series. (English) Zbl 0671.62099
Summary: Numerical techniques are presented for constructing nonlinear predictive models directly from time series data. The accuracy of the short-term predictions is tested using computer-generated time series, and comparisons are made of the effectiveness of the various techniques. Scaling laws are developed which describe the data requirements for reliable predictions. It is also shown how to use the models to convincingly distinguish low-dimensional chaos from randomness, and to make statistical long-term predictions.

MSC:
62M20 Inference from stochastic processes and prediction
65C99 Probabilistic methods, stochastic differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barnsley, M. F.; Demko, S., Iterated function systems and the global construction of fractals, (Proc. R. Soc. Lond. A, 99, (1985)), 243 · Zbl 0588.28002
[2] Bayly, B. J.; Goldhirsch, I.; Orszag, S. A., Independent degrees of freedom of dynamical systems, (1986), Princeton University, preprint · Zbl 0677.58022
[3] Box, G. E.P.; Jenkins, G. M., Time series analysis, forecasting and control, (1970), Holden-Day San Francisco · Zbl 0109.37303
[4] Broomhead, D. S.; Jones, R.; King, G. P., Topological dimension and local coordinates from time series data, J. Phys. A, 20, L563, (1987) · Zbl 0644.58030
[5] Broomhead, D. S.; King, G. P., Extracting qualitative dynamics from experimental data, Physica D, 20, 217, (1987) · Zbl 0603.58040
[6] Broomhead, D. S.; Newell, A. C.; Rand, D.; Lerman, J. C., A finite dimensional description of turbulent flows, (1987), University of Arizona, in preparation
[7] J.G. Caputo, PhD thesis, Grenoble.
[8] Cremers, J.; Hubler, A., Construction of differential equations from experimental data, Z. Naturforsch. A, 42, 797, (1987)
[9] Crutchfield, J. P.; McNamara, B. S., Equations of motion from a data series, Complex Systems, 1, 417, (1987) · Zbl 0675.58026
[10] Duchon, J., Spline minimising rotation-invariant seminorms in Sobolev spaces, (Shempp, W.; Zeller, K., Constructive Theory of Several Variables, Lecture Notes in Mathematics 571, (1977), Springer Berlin)
[11] Dyn, N.; Levin, D.; Rippa, S., Numerical procedures for surface spline Fitting of scattered data by radial basis functions, SIAM J. Sci. Stat. Comput., 7, 639, (1986) · Zbl 0631.65008
[12] Eckmann, J. P.; Kamporst, S. O.; Ruelle, D.; Ciliberto, S., Lyapunov exponents from a time series, Phys. Rev. A, 34, 4971, (1986)
[13] Eckmann, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617, (1985) · Zbl 0989.37516
[14] Farmer, J. D., Chaotic attractors of an infinite dimensional system, Physica D, 4, 366, (1982) · Zbl 1194.37052
[15] Farmer, J. D.; Sidorowich, J. J., Predicting chaotic time series, Phys. Rev. Lett., 59, 845, (1987)
[16] Farmer, J. D.; Sidorowich, J. J., Exploiting chaos to predict the future and reduce noise, (1988), preprint, Los Alamos
[17] Franke, R., Scattered data interpolation: tests of some methods, Math. Comp., 38, 181, (1982) · Zbl 0476.65005
[18] Frederickson, P.; Kaplan, J. L.; Yorke, E. D.; Yorke, J. A., The Lyapunov dimension of strange attractors, J. Diff. Equ., 49, 185, (1983) · Zbl 0515.34040
[19] Froeling, H.; Crutchfield, J. P.; Farmer, J. D.; Packard, N. H.; Shaw, R. S., On determining the dimension of chaotic flows, Physica D, 3, 605, (1981) · Zbl 1194.37053
[20] Gabor, D.; Wilby, W. P.; Woodcock, R., A universal nonlinear filter, predictor and simulator which optimizes itself by a learning process, (Proc. IEEE B, 108, (1960)), 422
[21] Grassberger, P., Do climate attractors exist?, Nature, 323, 609, (1986)
[22] Grassberger, P.; Procaccia, I., Characterisation of strange attractors, Phys. Rev. Lett., 50, 346, (1983)
[23] Grassberger, P.; Procaccia, I., Dimensions and entropies of strange attractors from a fluctuating dynamics approach, Physica D, 13, 34, (1984) · Zbl 0587.58031
[24] Ikeda, K., Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., 30, 257, (1979)
[25] Lapedes, A.; Farber, R., Nonlinear signal processing using neural networks: prediction and signal modelling, (1987), preprint, Los Alamos
[26] Lorenz, E. N., Deterministic non-periodic flow, J. Atmos. Sci., 20, 130, (1963)
[27] Lorenz, E. N., Atmospheric predictability as revealed by naturally occurring analogues, J. Atmos. Sci., 26, 636, (1969)
[28] Mackey, M. C.; Glass, L., Oscillation and chaos in physiological control systems, Science, 197, 287, (1977) · Zbl 1383.92036
[29] Michelli, C. A., Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx., 2, 11, (1986) · Zbl 0625.41005
[30] Powell, M. J.D., Approximation theory and methods, (1981), Cambridge University Press Cambridge · Zbl 0453.41001
[31] Powell, M. J.D., Radial basis functions for multivariate interpolation: a review, (1985), Univ. of Cambridge, preprint · Zbl 0575.65065
[32] Powell, M. J.D., Radial basis function approximations to polynomials, (1987), Univ. of Cambridge, preprint · Zbl 0652.41002
[33] Sano, M.; Sawada, Y., Measurement of the Lyapunov spectrum from chaotic time series, Phys. Rev. Lett., 55, 1082, (1985)
[34] Sirovich, L.; Rodriguez, J. D., Coherent structures and chaos: a model problem, Phys. Lett. A, 120, 211, (1987)
[35] L. Smith, private communication.
[36] Takens, F., Detecting strange attractors in turbulence, (Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Math., 898, (1981), Springer Berlin), 366-381
[37] Tavakol, R. K.; Tworkowski, A. S., Fluid intermittency in low dimensional systems, Phys. Lett. A, 126, 318, (1988)
[38] Tong, H., Threshold models in non-linear time series analysis, (Lecture Notes in Statistics, vol. 21, (1983), Springer New York) · Zbl 0527.62083
[39] Wilkinson, J. H.; Reinsch, C., Linear algebra, (1971), Springer Berlin
[40] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D, 16, 285, (1985) · Zbl 0585.58037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.