×

zbMATH — the first resource for mathematics

A review of element-based Galerkin methods for numerical weather prediction: finite elements, spectral elements, and discontinuous Galerkin. (English) Zbl 1360.86004
Summary: Numerical weather prediction (NWP) is in a period of transition. As resolutions increase, global models are moving towards fully nonhydrostatic dynamical cores, with the local and global models using the same governing equations; therefore we have reached a point where it will be necessary to use a single model for both applications. The new dynamical cores at the heart of these unified models are designed to scale efficiently on clusters with hundreds of thousands or even millions of CPU cores and GPUs. Operational and research NWP codes currently use a wide range of numerical methods: finite differences, spectral transform, finite volumes and, increasingly, finite/spectral elements and discontinuous Galerkin, which constitute element-based Galerkin (EBG) methods. Due to their important role in this transition, will EBGs be the dominant power behind NWP in the next 10 years, or will they just be one of many methods to choose from? One decade after the review of numerical methods for atmospheric modeling by J. Steppeler et al. [“Review of numerical methods for nonhydrostatic weather prediction models”, Meteorology Atmos. Phys. 82, No. 1, 287–301 (2003; doi:10.1007/s00703-001-0593-8)], this review discusses EBG methods as a viable numerical approach for the next-generation NWP models. One well-known weakness of EBG methods is the generation of unphysical oscillations in advection-dominated flows; special attention is hence devoted to dissipation-based stabilization methods. Since EBGs are geometrically flexible and allow both conforming and non-conforming meshes, as well as grid adaptivity, this review is concluded with a short overview of how mesh generation and dynamic mesh refinement are becoming as important for atmospheric modeling as they have been for engineering applications for many years.

MSC:
86-08 Computational methods for problems pertaining to geophysics
86A10 Meteorology and atmospheric physics
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adcroft, A; Hill, C; Marshall, J, Representation of topography by shaved cells in a height coordinate Ocean model, Mon Weather Rev, 125, 2293-2315, (1997)
[2] Ahmad, N; Lindeman, J, Euler solutions using flux-based wave decomposition, Int J Numer Methods Fluids, 54, 47-72, (2007) · Zbl 1113.76054
[3] Arakawa, A; Konor, CS, Unification of the anelastic and quasi-hydrostatic systems of equations, Mon Weather Rev, 137, 710-726, (2009)
[4] Argyris JH, Kelsey S (1960) Energy theorems and structural analysis. Butterworths, London. Reprented from a series of article in Aircraft Eng 19, 742 · Zbl 1349.86015
[5] Aubry R, Vázquez M, Houzeaux G, Cela JM, Marras S (2010) An unstructured CFD approach to numerical weather prediction. In: Proceedings: 48th AIAA aerospace sciences meeting, 4-7 January 2010, Orlando, Florida. AIAA paper, pp 691-783
[6] Avila, M; Codina, R; Principe, J, Large eddy simulation of low Mach number flows using dynamic and orthogonal subgrid scales, Comput Fluids, 99, 44-66, (2014) · Zbl 1391.76196
[7] Babuska, I; Szabo, BA; Katz, IN, The p-version of the finite element method, SIAM J Numer Anal, 18, 515-545, (1981) · Zbl 0487.65059
[8] Bacon, D; Ahmad, N; Boybeyi, Z; Dunn, T; Hall, M; Lee, C; Sarma, R; Turner, M, A dynamically adaptive weather and dispersion model: the operational multiscale environment model with grid adaptivity (OMEGA), Mon Weather Rev, 128, 2044-2075, (2000)
[9] Baiocchi, C; Brezzi, F; Franca, L, Virtual bubbles and the Galerkin/least-squares type methods (ga.L.S.), Comput Methods Appl Mech Eng, 105, 121-141, (1993) · Zbl 0772.76033
[10] Bannon, P, On the anelastic approximation for a compressible atmosphere, J Atmos Sci, 53, 3618-3628, (1996)
[11] Baruzzi G, Habashi W, Hefez N (1992) A second order accurate finite element method for the solutions of the Euler and Navier-Stokes equations. In: Proceedings of the 13th international conference on numerical methods in fluid dynamics, Rome. Springer, pp 509-513 · Zbl 0868.76072
[12] Bassi, F; Rebay, S, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J Comput Phys, 131, 267-279, (1997) · Zbl 0871.76040
[13] Bassi, F; Rebay, S, High-order accurate discontinuous finite element solution of the 2D Euler equations, J Comput Phys, 138, 251-285, (1997) · Zbl 0902.76056
[14] Bastos J, Sadowski N (2003) Electromagnetic modeling by finite element methods, 1st edn. CRC, Boca Raton
[15] Batchelor, G, The condition for dynamical similarities of motions of a frictionless perfect-gas atmosphere, Q J R Meteorol Soc, 79, 224-235, (1953)
[16] Bauer, W; Baumann, M; Scheck, L; Gassmann, A; Heuveline, V; Jones, S, Simulation of tropical-cyclone-like vortices in shallow-water ICON-hex using goal-oriented r-adaptivity, Theor Comput Fluid Dyn, 28, 107-128, (2014)
[17] Bazilevs, Y; Calo, V; Cottrell, JA; Hughes, TJR; Reali, A; Scovazzi, G, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput Methods Appl Mech Eng, 197, 173-201, (2007) · Zbl 1169.76352
[18] Behrens J (2006) Adaptive atmospheric modeling. Key techniques in grid generation, data structures, and numerical operations with applications. Springer, Berlin · Zbl 1138.86002
[19] Beland, M; Coté, J; Staniforth, A, The accuracy of a finite-element vertical discretization scheme for primitive equation models: comparison with a finite-difference scheme, Mon Weather Rev, 111, 2298-2318, (1983)
[20] Benacchio, T; O’Neill, WP; Klein, R, A blended soundproof-to-compressible numerical model for small to meso-scale atmospheric dynamics, Mon Weather Rev, 142, 4416-4438, (2014)
[21] Benoit, R; Desgagne, M; Pellerin, P; Pellerin, S; Chartier, Y; Desjardins, S, The Canadian MC2: a semi-Lagrangian, semi-implicit wideband atmospheric model suited for finescale process studies and simulation, Mon Weather Rev, 125, 2382-2415, (1997)
[22] Berg, J; Mann, J; Bechmann, A; Courtney, M; Jørgensen, HE, The bolund experiment, part i: flow over a steep, three-dimensional Hill, Bound Layer Meteorol, 141, 219-243, (2011)
[23] Berger, MJ; Colella, P, Local adaptive mesh refinement for shock hydrodynamics, J Comput Phys, 82, 64-84, (1989) · Zbl 0665.76070
[24] Berger, MJ; Oliger, J, Adaptive mesh refinement for hyperbolic partial differential equations, J Comput Phys, 53, 484-512, (1984) · Zbl 0536.65071
[25] Bernardi C, Maday Y, Patera AT (1993) Domain decomposition by the mortar element method. In: Asymptotic and numerical methods for partial differential equations with critical parameters. Springer, pp 269-286 · Zbl 1059.76037
[26] Bey K, Oden JT (1991) A Runge-Kutta discontinuous finite element method for high speed flows. In: AIAA computational fluid dynamics conference, 10th, Honolulu, HI, pp 541-555 · Zbl 0790.76065
[27] Bolton, D, The computation of equivalent potential temperature, Mon Weather Rev, 108, 1046-1053, (1980)
[28] Boman, EG; Catalyurek, UV; Chevalier, C; Devine, KD, The zoltan and isorropia parallel toolkits for combinatorial scientific computing: partitioning, ordering, and coloring, Sci Program, 20, 129-150, (2012)
[29] Bonaventura, L, A semi-implicit, semi-Lagrangian scheme using the height coordinate for a nonhydrostatic and fully elastic model of atmospheric flows, J Comput Phys, 158, 186-213, (2000) · Zbl 0963.76058
[30] Botta, N; Klein, R; Langenberg, S; Lutzenkirchen, S, Well balanced finite volume methods for nearly hydrostatic flows, J Comput Phys, 196, 539-565, (2004) · Zbl 1109.86304
[31] Boyd JP (1996) The erfc-log filter and the asymptotics of the Euler and Vandeven sequence accelerations.In: Ilin AV, Scott LR (eds) Proceedings of the third international conference on spectral and high order methods, Houston Journal of Mathematics, pp 267-276 · Zbl 1113.76054
[32] Boyd, JP, Two comments on filtering for Chebyshev and Legendre spectral and spectral element methods, J Comput Phys, 143, 283-288, (1998) · Zbl 0920.65046
[33] Brdar S (2012) A higher order locally adaptive discontinuous Galerkin approach for atmospheric simulations. Ph.D. thesis, Universitätsbibliothek Freiburg · Zbl 1255.86006
[34] Brdar, S; Baldauf, M; Dedner, A; Klöfkorn, R, Comparison of dynamical cores for NWP models: comparison of COSMO and DUNE, Theor Comput Fluid Dyn, 27, 453-472, (2012)
[35] Brezzi, F; Bristeau, M; Franca, L; Mallet, M; Rogé, G, A relationship between stabilized finite element methods and the Galerkin method with bubble functions, Comput Methods Appl Mech Eng, 96, 117-129, (1992) · Zbl 0756.76044
[36] Brezzi F, Franca L, Hughes TJR, Russo A (1996) Stabilization techniques and subgrid scales capturing. Tech. Rep. http://ccm.ucdenver.edu/reports/rep083.pdf · Zbl 0881.65100
[37] Brezzi, F; Franca, LP; Hughes, TR, \(b=∫ g\), Comput Methods Appl Mech Eng, 145, 329-339, (1997) · Zbl 0904.76041
[38] Brooks, AN; Hughes, TJR, Streamline upwind/Petrov-Galerkin formulations for convective dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 32, 199-259, (1982) · Zbl 0497.76041
[39] Bryan, GH; Morrison, H, Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics, Mon Weather Rev, 140, 202-225, (2011)
[40] Budd, CJ; Williams, JF, Moving mesh generation using the parabolic Monge-Ampére equation, SIAM J Sci Comput, 31, 3438-3465, (2009) · Zbl 1200.65099
[41] Burridge D, Steppeler J, Struffing R (1986) Finite element schemes for the vertical discretization of the ecmwf forecast model using linear elements. Tech. Rep. 54, ECMWF, Sheffild Park, Reading, UK · Zbl 1427.74071
[42] Burstedde, C; Wilcox, LC; Ghattas, O, P4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J Sci Comput, 33, 1103-1133, (2011) · Zbl 1230.65106
[43] Canuto, C, Stabilization of spectral methods by finite element bubble functions, Comput Methods Appl Mech Eng, 116, 13-26, (1994) · Zbl 0826.76056
[44] Canuto, C; Puppo, G, Bubble stabilization of spectral Legendre methods for the advection-diffusion equation, Comput Methods Appl Mech Eng, 118, 239-263, (1994) · Zbl 0847.76059
[45] Canuto, C; Russo, A; Kemenade, V, Stabilized spectral methods for the Navier-Stokes equations: residual-free bubbles and preconditioning, Comput Methods Appl Mech Eng, 166, 65-83, (1998) · Zbl 0940.76058
[46] Canuto, C; Kemenade, V, Bubble-stabilized spectral methods for the incomplressible Navier-Stokes equations, Comput Methods Appl Mech Eng, 135, 35-61, (1996) · Zbl 0894.76057
[47] Chang, RY; Hsu, CH, A variable-order spectral element method for incompressible viscous flow simulation, Int J Numer Methods Eng, 39, 2865-2887, (1996) · Zbl 0885.76071
[48] Chavent, G; Salzano, G, A finite-element method for the 1-d water flooding problem with gravity, J Comput Phys, 45, 307-344, (1982) · Zbl 0489.76106
[49] Chevalier, C; Pellegrini, F, Pt-scotch: a tool for efficient parallel graph ordering, Parallel Comput, 34, 318-331, (2008)
[50] Christie, I; Griffiths, D; Mitchell, A; Zienkiewicz, OC, Finite element methods for second order differential equations with significant first derivatives, Int J Numer Methods Eng, 10, 1389-1396, (1976) · Zbl 0342.65065
[51] Ciarlet PG (1978) The finite element method for elliptic problems. Elsevier, Amsterdam · Zbl 0383.65058
[52] Cockburn B, Karniadakis GE, Shu CW (2000) The development of discontinuous Galerkin methods. UMSI research report/University of Minnesota (Minneapolis, MN). Supercomputer Institute, vol 99, p 220 · Zbl 0526.76087
[53] Cockburn, B; Shu, CW, The Runge-Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws, Rairo-Math Model Numer, 25, 337-361, (1991) · Zbl 0732.65094
[54] Cockburn, B; Shu, CW, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J Numer Anal, 35, 2440-2463, (1998) · Zbl 0927.65118
[55] Codina, R, A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation, Comput Methods Appl Mech Eng, 110, 325-342, (1993) · Zbl 0844.76048
[56] Codina, R, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput Methods Appl Mech Eng, 190, 1579-1599, (2000) · Zbl 0998.76047
[57] Codina, R, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput Methods Appl Mech Eng, 191, 4295-4321, (2002) · Zbl 1015.76045
[58] Codina, R; Blasco, J, Analysis of a stabilized finite element approximation of the transient convection-diffusion-reaction equation using orthogonal subscales, Comput Vis Sci, 4, 167-174, (2002) · Zbl 0995.65101
[59] Codina, R; Oñate, E; Cervera, M, The intrinsic time for the streamline upwind/Petrov-Galerkin formulation using quadratic elements, Comput Methods Appl Mech Eng, 94, 239-262, (1992) · Zbl 0748.76082
[60] Collis, SS; Chang, Y, The DG/VMS method for unified turbulence simulation, AIAA Pap, 3124, 24-27, (2002)
[61] Corsini, A; Rispoli, F; Santoriello, A, A variational multiscale higher-order finite element formulation for turbomachinery flow computations, Comput Methods Appl Mech Eng, 194, 4797-4823, (2005) · Zbl 1093.76032
[62] COSMO P (1998) Consortium for small-scale modeling. COSMO project. www.cosmo-model.org/content/model/documentation · Zbl 0622.76074
[63] Coté, J, A Lagrange multiplier approach for the metric terms of semi-Lagrangian models on the sphere, Q J R Meteorol Soc, 114, 1347-1352, (1988)
[64] Coté, J; Desmarais, J; Gravel, S; Methot, A; Patoine, A; Roch, M; Staniforth, A, The operational CMC-MRB global environmental multiscale GEM model. part II: results, Mon Weather Rev, 126, 1397-1418, (1998)
[65] Coté, J; Gravel, S; Methot, A; Patoine, A; Roch, M; Staniforth, A, The operational CMC-MRB global environmental multiscale (gem) model. part i: design considerations and formulation, Mon Weather Rev, 126, 1373-1395, (1998)
[66] Courant, R, Variational methods for the solution of problems of equilibrium and vibrat, Bull Am Math Soc, 49, 1-23, (1943) · Zbl 0063.00985
[67] Courant, R; Friedrichs, K; Lewy, H, Uber die partiellen differenzengleichungen der mathematischen physik, Math Ann, 100, 32-74, (1928) · JFM 54.0486.01
[68] Courtier P, Freydier C, Geleyn J, Rabier F, Rochas M (1991) The arpege project at meteo-france. In: ECMWF workshop on numerical methods in atmospheric modelling vol II, 2, pp 193-231 · Zbl 1405.65127
[69] Cullen, M, A simple finite element method for meteorological problems, J Inst Math Appl, 11, 15-31, (1973) · Zbl 0257.65090
[70] Cullen, M, A finite element method for a non-linear initial value problem, IMA J Appl Math, 13, 233-247, (1974) · Zbl 0279.65090
[71] Cullen, MJP, A test of a semi-implicit integration technique for a fully compressible nonhydrostatic model, Q J R Meteorol Soc, 116, 1253-1258, (1990)
[72] Davies, HC, A lateral boundary formulation for multi-level prediction models, Q J R Meteorol Soc, 102, 405-418, (1976)
[73] Dennis J, Vertenstein M, Worley P, Mirin A, Craig A, Jacob R, Mickelson S (2012) Computational performance of ultra-high-resolution capability in the community earth system model. Int J High Perf Comput Appl 26:43-53
[74] Dennis JM, Edwards J, Evans KJ, Guba O, Lauritzen PH, Mirin AA, St-Cyr A, Taylor MA, Worley PH (2012) CAM-SE: a scalable spectral element dynamical core for the community atmosphere model. Int J High Perf Comput Appl 26 · Zbl 1297.76109
[75] Dietachmayer, GS; Droegemeier, KK, Application of continuous dynamic grid adaptation techniques to meteorological modeling. part 1: basic formulation and accuracy, Mon Weather Rev, 120, 1675-1706, (1992)
[76] Dolejši, V; Feistauer, M, A semi-implicit discontinuous Galerkin finite element method for the numerical solution of inviscid compressible flow, J Comput Phys, 198, 727-746, (2004) · Zbl 1116.76386
[77] Doms G, Schattler U (2002) A description of the nonhydrostatic regional model LM. Part I: dynamics and numerics. Consortium for small-scale modelling (COSMO) LM F90 2.18. Tech. rep., DWD, Germany, www.cosmo-model.org
[78] Donea, J, A Taylor-Galerkin method for convection transport problems, Int J Numer Methods Eng, 20, 101-119, (1984) · Zbl 0524.65071
[79] Donea J, Huerta A (2003) Finite element methods for flow problems, 1st edn. Wiley, New York
[80] Dongarra JJ, Luszczek P, Petitet A (2003) The LINPACK benchmark: past, present, and future. concurrency and computation: practice and experience. Concurrency and computation: practice and experience 15, 2003
[81] Dorr MR (1988) Domain decomposition via Lagrange multipliers. UCRL-98532, Lawrence Livermore National Laboratory, Livermore, CA
[82] Douglas, J; Wang, J, An absolutely stabilized finite element method, Math Comput, 52, 495-508, (1989) · Zbl 0669.76051
[83] Dudhia, J, A nonhydrostatic version of the penn state-ncar mesoscale model: validation tests and simulation of the atlantic cyclone and cold front, Mon Weather Rev, 121, 1493-1513, (1993)
[84] Durran, D, Improving the anelastic approximation, J Atmos Sci, 46, 1453-1461, (1989)
[85] Durran D (1998) Numerical methods for wave equations in geophysical fluid dynamics, 1st edn. Springer, Berlin · Zbl 0918.76001
[86] Durran, D, A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow, J Fluid Mech, 601, 365-379, (2008) · Zbl 1151.76572
[87] Durran, D; Blossey, P, Implicit-explicit multistep methods for fast-wave-slow-wave problems, Mon Weather Rev, 140, 1307-1325, (2012)
[88] Emanuel KA (1994) Atmospheric convection. Oxford University Press, Oxford
[89] Eriksson, LE, Generation of boundary conforming grids around wing-body configurations using transfinite interpolation, AIAA J., 20, 1313-1320, (1982) · Zbl 0496.76009
[90] Eskilsson, C; Sherwin, SJ, A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations, Int J Numer Methods Fluids, 45, 605-623, (2004) · Zbl 1085.76544
[91] Farhat C, Rajasekharan A, Koobus B (2006) A dynamic variational multiscale method for large eddy simulations on unstructured meshes. Comput Methods Appl Mech Eng 195(13-16):1667-1691. doi:10.1016/j.cma.2005.05.045. http://www.sciencedirect.com/science/article/pii/S0045782505003014. A Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday · Zbl 1116.76046
[92] Favre, A, Turbulence: space-time statistical properties and behavior in supers onic flows, Phys Fluids, 26, 2851-2863, (1983) · Zbl 0524.76069
[93] Fischer, PF; Kruse, GW; Loth, F, Spectral element methods for transitional flows in complex geometries, J Sci Comput, 17, 81-98, (2002) · Zbl 1001.76075
[94] Fischer, PF; Mullen, JS, Filter-based stabilization of spectral element methods, C R Acad Sci Ser I Math, 332, 265-270, (2001) · Zbl 0990.76064
[95] Fletcher C (1987) Computational techniques for fluid dynamics—vol I: fundamentals and general techniques, 1st edn. Springer, Berlin
[96] Fornberg B (1998) A practical guide to pseudospectral methods, vol 1. Cambridge University Press, Cambridge · Zbl 0912.65091
[97] Fortin, M; Fortin, A, A new approach for the FEM simulation of viscoelastic flows, J Non-Newton Fluid Mech, 32, 295-310, (1989) · Zbl 0672.76010
[98] Fournier, A; Taylor, MJ; Tribbia, JJ, The spectral element atmospheric model (SEAM): high-resolution parallel computation and localized resolution of regional dynamics, Mon Weather Rev, 132, 726-748, (2004)
[99] Fraedrich, K; Kirk, E; Luksch, U; Lunkeit, F, The portable university model of the atmosphere (PUMA): storm track dynamics and low frequency variabilit, Meteorol Z, 14, 735-745, (2005)
[100] Franca, L; Frey, S; Hughes, T, Stabilized finite element methods. I: application to the advective-diffusive model, Comput Methods Appl Mech Eng, 95, 253-276, (1992) · Zbl 0759.76040
[101] Francis, P, The possible use of Laguerre polynomials for representing the vertical structure of numerical models of the atmosphere, Q J R Meteorol Soc, 98, 662-667, (1972)
[102] Fries TP, Matthies HG (2004) A review of Petrov-Galerkin stabilization approaches and an extension to meshfree methods. Tech. Rep. 1, Institute of Scientific Computing. Technical University Braunschweig
[103] Gaberšek, S; Giraldo, FX; Doyle, J, Dry and moist idealized experiments with a two-dimensional spectral element model, Mon Weather Rev, 140, 3163-3182, (2012)
[104] Gal-Chen, T; Somerville, R, On the use of a coordinate transformation for the solution of the Navier-Stokes equations, J Comput Phys, 17, 209-228, (1975) · Zbl 0297.76020
[105] Galerkin, BG, Series solution of some problems of elastic equilibrium of rods and plates, Vestn Inzh Tekh, 19, 897-908, (1915)
[106] Gassmann, A, An improved two-time-level split-explicit integration scheme for non-hydrostatic compressible models, Meteorol Atmos Phys, 88, 23-38, (2005)
[107] Gassmann, A; Herzog, HJ, Towards a consistent numerical compressible non-hydrostatic model using generalized Hamiltonian tools, Q J R Meteorol Soc, 134, 1597-1613, (2008)
[108] Geurts BJ (2004) Elements of direct and large eddy simulation. Edwards, Philadelphia
[109] Ginis, I; Richardson, RA; Rothstein, LM, Design of a multiply nested primitive equation Ocean model, Mon Weather Rev, 126, 1054-1079, (1998)
[110] Giraldo, FX, Lagrange-Galerkin methods on spherical geodesic grids, J Comput Phys, 136, 197-213, (1997) · Zbl 0909.65066
[111] Giraldo, FX, The Lagrange-Galerkin method for the two-dimensional shallow water equations on adaptive grids, Int J Numer Methods Fluids, 33, 789-832, (2000) · Zbl 0989.76047
[112] Giraldo, FX, A spectral element shallow water model on spherical geodesic grids, Int J Numer Methods Fluids, 35, 869-901, (2001) · Zbl 1030.76045
[113] Giraldo, FX, A spectral element shallow water model on spherical geodesic grids, Int J Numer Methods Fluids, 35, 869-901, (2001) · Zbl 1030.76045
[114] Giraldo, FX, Semi-implicit time-integrators for a scalable spectral element atmospheric model, Q J R Meteorol Soc, 131, 2431-2454, (2005)
[115] Giraldo FX (2015) Element-based Galerkin methods on tensor-product bases. In: Lecture notes, pp 430 · Zbl 0795.76045
[116] Giraldo, FX; Hesthaven, JS; Warburton, T, Nodal high-order discontinuous Galerkin methods for spherical shallow water equations, J Comput Phys, 181, 499-525, (2002) · Zbl 1178.76268
[117] Giraldo, FX; Kelly, JF; Constantinescu, EM, Implicit-explicit formulations for a 3D nonhydrostatic unified model of the atmosphere (NUMA), SIAM J Sci Comput, 35, 1162-1194, (2013) · Zbl 1280.86008
[118] Giraldo, FX; Restelli, M, A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases, J Comput Phys, 227, 3849-3877, (2008) · Zbl 1194.76189
[119] Giraldo, FX; Rosmond, T, A scalable spectral element Eulerian atmospheric model (see-am) for numerical weather prediction: dynamical core tests, Mon Weather Rev, 132, 133-153, (2004)
[120] Gjesdal, T; Wasberg, CE; Reif, BAP; Andreassen, Ø, Variational multiscale turbulence modelling in a high order spectral element method, J Comput Phys, 228, 7333-7356, (2009) · Zbl 1172.76021
[121] Gopalakrishnan, SG; Bacon, DP; Ahmad, NN; Boybeyi, Z; Dunn, TJ; Hall, MS; Jin, Y; Lee, PCS; Mays, DE; Madala, RV, An operational multiscale hurricane forecasting system, Mont Weather Rev, 130, 1830-1847, (2002)
[122] Gordon, WN; Hall, CA, Construction of curvilinear coordinate systems and application to mesh generation, Int J Numer Methods Eng, 7, 461-477, (1973) · Zbl 0271.65062
[123] Gravemeier V (2003) The variational multiscale method for laminar and turbulent incompressible flow. Ph.D. thesis, Universitat Stuttgart · Zbl 1177.76341
[124] Grell G, Dudhia J, Stauffer D (1995) A description of the fifth-generation penn state/ncar mesoscale model (mm5). Tech. rep., NCAR Technical Note NCART/TN-398+STR · Zbl 1120.65338
[125] Guba, O; Taylor, MA; Ullrich, PA; Overfelt, JR; Levy, MN, The spectral element method on variable resolution grids: evaluating grid sensitivity and resolution-aware n umerical viscosity, Geosci Model Dev, 7, 4081-4117, (2014)
[126] Guermond, J; Marra, A; Quartapelle, L, Subgrid stabilized projection method for 2d unsteady flows at high Reynolds numbers, Comput Methods Appl Mech Eng, 195, 5857-5876, (2006) · Zbl 1121.76036
[127] Guermond J, Pasquetti R (2009) Entropy viscosity method for high-order approximations of conservation laws. In: Proceedings of the ICOSAHOM 2009 conference, Trondheim, Norway. Springer · Zbl 1216.65136
[128] Guermond, JL; Pasquetti, R, Entropy-based nonlinear viscosity for Fourier approximations of conservation laws, C R Acad Sci Ser I, 346, 801-806, (2008) · Zbl 1145.65079
[129] Guermond, JL; Pasquetti, R; Popov, B, Entropy viscosity method for nonlinear conservation laws, J Comput Phys, 230, 4248-4267, (2011) · Zbl 1220.65134
[130] Guo, BY; Ma, HP; Tadmor, E, Spectral vanishing viscosity method for nonlinear conservation laws, SIAM J Numer Anal, 39, 1254, (2001) · Zbl 1020.65071
[131] Haidvogel, DB; Curchitser, E; Iskandarani, M; Hughes, R; Taylor, M, Global modelling of the Ocean and atmosphere using the spectral element method, Atmos Ocean, 35, 505-531, (1997)
[132] Hansbo, P, Explicit streamline diffusion finite element methods for the compressible Euler equations in conservation variables, J Comput Phys, 109, 274-288, (1993) · Zbl 0795.76045
[133] Hesthaven JS, Warburton T (2008) Nodal discontinuous Galerkin methods: algorithms, analysis, and applications, vol 54. Springer, New York · Zbl 1134.65068
[134] Heus, T; Heerwaarden, CC; Jonker, H; Siebesma, AP; Axelsen, S; Dries, K; Geoffroy, O; Moene, AF; Pino, D; Roode, SR; Vilà-Guerau de Arellano, J, Formulation of the Dutch atmospheric large-eddy simulation (DALE) and overview of its applications, Geosci Model Dev, 3, 415-555, (2010)
[135] Hodur, R, The naval research laboratory’s coupled Ocean/atmosphere mesoscale prediction system (coamps), Mon Weather Rev, 125, 1414-1430, (1997)
[136] Hogan, TF; Liu, M; Ridout, JA; Peng, MS; Whitcomb, TR; Ruston, BC; Reynolds, CA; Eckermann, SD; Moskaitis, JR; Baker, NL, The navy global environmental model, Oceanography, 27, 116-125, (2014)
[137] Holmstrom, I, On a method for parametric representation of the state of the atmosphere, Tellus, 15, 127-149, (1963)
[138] Holton J (2004) An introduction to dynamic meteorology, 4th edn. Elsevier, Amsterdam Internation Geophysics Series: Vol. 88
[139] Houze RA (1993) Cloud dynamics. Academic Press, San Diego
[140] Houzeaux, G; Aubry, R; Vázquez, M, Extension of fractional step techniques for incompressible flows: the preconditioned orthomin(1) for the pressure Schur complement, Comput Fluids, 44, 297-313, (2011) · Zbl 1271.76208
[141] Houzeaux, G; Eguzkitza, B; Vázquez, M, A variational multiscale model for the advection-diffusion-reaction equation, Commun Numer Methods Eng, 25, 787-809, (2009) · Zbl 1168.65413
[142] Houzeaux, G; Vázquez, M; Aubry, R; Cela, JM, A massively parallel fractional step solver for incompressible flows, J Comput Phys, 228, 6316-6332, (2009) · Zbl 1261.76030
[143] Hughes, TJR, Multiscale phenomena: green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput Methods Appl Mech Eng, 127, 387-401, (1995) · Zbl 0866.76044
[144] Hughes, TJR; Sangalli, G, Variational multiscale analysis: the finie-scale green’s function, projection, optimization, localization, and stabilized methods, SIAM J Numer Anal, 45, 539-557, (2007) · Zbl 1152.65111
[145] Hughes, TJR; Scovazzi, G; Tezduyar, TE, Stabilized methods for compressible flows, J Sci Comput, 43, 343-368, (2010) · Zbl 1203.76130
[146] Hughes, TJR; Brooks, AN; Hughes, TJR (ed.), A multidimensional upwind scheme with no crosswind diffusion, No. 32, 19-35, (1979), New York
[147] Hughes, TJR; Brooks, AN, A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, Finite Elem Fluids, 4, 47-65, (1982)
[148] Hughes, TJR; Cottrell, JA; Bazilevs, Y, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng, 194, 4135-4195, (2005) · Zbl 1151.74419
[149] Hughes, TJR; Feijóo, G; Mazzei, L; Quincy, J, The variational multiscale method—a paradigm for computational mechanics, Comput Methods Appl Mech Eng, 166, 3-24, (1998) · Zbl 1017.65525
[150] Hughes, TJR; Franca, LP; Hulbert, GM, A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/last-squares method for advective-diffusive equations, Comput Methods Appl Mech Eng, 73, 173-189, (1989) · Zbl 0697.76100
[151] Hughes, TJR; Mallet, M, A new finite element formulation for computational fluid dynamics: III. the generalized streamline operator for multidimensional advective-diffusive systems, Comput Methods Appl Mech Eng, 58, 305-328, (1986) · Zbl 0622.76075
[152] Hughes, TJR; Mallet, M; Mizukami, A, A new finite element formulation for computational fluid dynamics: II. beyond SUPG, Comput Methods Appl Mech Eng, 54, 341-355, (1986) · Zbl 0622.76074
[153] Hughes, TJR; Mazzei, L; Jansen, KE, Large eddy simulation and the variational multiscale method, Comput Vis Sci, 3, 47-59, (2000) · Zbl 0998.76040
[154] Hughes, TJR; Scovazzi, G; Bochev, PB; Buffa, A, A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method, Comput Methods Appl Mech Eng, 195, 2761-2787, (2006) · Zbl 1124.76027
[155] Hughes, TJR; Stewart, J, A space-time formulation for multiscale phenomena, J Comput Appl Math, 74, 217-229, (1996) · Zbl 0869.65061
[156] Hughes, TJR; Tezduyar, T, Finite element methods for first-order hyperbolic systems with particular emphasis pn the compressible Euler equations, Comput Methods Appl Mech Eng, 45, 217-284, (1984) · Zbl 0542.76093
[157] Hughes TJR (2000) The finite element method: linear static and dynamics finite element analysis, 2nd edn. Dover, New York · Zbl 1191.74002
[158] Iskandarani, M; Haidvogel, DB; Boyd, JP, A staggered spectral element model with application to the oceanic shallow water equations, Int J Numer Methods Fluids, 20, 393-414, (1995) · Zbl 0870.76057
[159] Jablonowski C (2004) Adaptive grids in weather and climate modeling. Ph.D. thesis, The University of Michigan · Zbl 0487.65059
[160] Jablonowski, C; Williamson, D, A baroclinic instability test case for atmospheric model dynamical cores, Q J R Meteorol Soc, 132, 2943-2975, (2006)
[161] Jablonowski C, Williamson DL (2011) The pros and cons of diffusion, filters and fixers in atmospheric general circulation models. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models. Lecture notes in computational science and engineering, vol 80. Springer, pp 381-482 · Zbl 1109.86304
[162] Jähn, M; Knoth, O; König, M; Vogelsberg, U, ASAM v2.7: a compressible atmospheric model with a Cartesian cut cell approach, Geosci Model Dev Disc, 7, 4463-4525, (2014)
[163] Jamet, P, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain, SIAM J Numer Anal, 15, 912-928, (1978) · Zbl 0434.65091
[164] Janjic, Z, On the pressure gradient force error in \(σ \)-coordinate spectral models, Mon Weather Rev, 117, 2285-2292, (1989)
[165] Janjic, Z, The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes, Mon Weather Rev, 122, 927-945, (1994)
[166] Janjic, Z, A nonhydrostatic model based on a new approach, Meteorol Atmos Phys, 82, 271-285, (2003)
[167] Janjic, Z; Gerrity, J; Nickovic, S, An alternative approach to non-hydrostatic modeling, Mon Weather Rev, 129, 1164-1178, (2001)
[168] John, V; Knobloch, P, On spurious oscillations at layers diminishing (\(sold\)) methods for convection-diffusion equations: part I—a review, Comput Methods Appl Mech Eng, 196, 2197-2215, (2007) · Zbl 1173.76342
[169] Johnson C (1987) Numerical solution of partial differential equations by the finite element method. Cambridge University Press, Cambridge · Zbl 0628.65098
[170] Johnson, C; Nävert, U; Pitkaranta, J, Finite element methods for linear hyperbolic problems, Comput Methods Appl Mech Eng, 45, 285-312, (1984) · Zbl 0526.76087
[171] Johnson C, Szepessy A (1988) Shock-capturing streamline diffusion finite element methods for nonlinear conservation laws. In: Hughes TJR, Tezduyar T (eds) AMD, The American Society of Mechanical Engineers, vol 95 · Zbl 0685.65086
[172] Kanevsky, A; Carpenter, MH; Hesthaven, JS, Idempotent filtering in spectral and spectral element methods, J Comput Phys, 220, 41-58, (2006) · Zbl 1106.65089
[173] Karniadakis G, Sherwin S (2005) Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, Oxford · Zbl 1116.76002
[174] Karypis, G; Kumar, V, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J Sci Comput, 20, 359-392, (1998) · Zbl 0915.68129
[175] Kaul, KU, Three-dimensional elliptic grid generation with fully automatic boundary constraints, J Comput Phys, 229, 5966-5979, (2010) · Zbl 1195.65194
[176] Kelly, JF; Giraldo, FX, Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: limited-area mode, J Comput Phys, 231, 7988-8008, (2012) · Zbl 1284.65134
[177] Kessler, E, On the distribution and continuity of water substance in atmospheric circulation, Meteorol Monogr, 10, 32, (1969)
[178] Klein, R, Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods, ZAMM, 80, 765-777, (2000) · Zbl 1050.76056
[179] Klein, R; Achatz, U; Bresch, D; Knio, O; Smolarkiewicz, PK, Regime of validity of soundproof atmospheric flow models, J Atmos Sci, 67, 3226-3237, (2010)
[180] Klemp, J, A terrain-following coordinate with smoothed coordinate surfaces, Mon Weather Rev, 139, 2163-2169, (2011)
[181] Klemp, J; Wilhelmson, R, The simulation of three-dimensional convective storm dynamics, J Atmos Sci, 35, 1070-1096, (1978)
[182] Knupp PM, Steinberg S (1993) Fundamentals of grid generation. CRC-Press, Boca Raton · Zbl 0855.65123
[183] Koobus, B; Farhat, C, A variational multiscale method for the large eddy simulation of compressible turbulent flows on unstructured meshes - application to vortex shedding, Comput Methods Appl Mech Eng, 193, 1367-1383, (2004) · Zbl 1079.76567
[184] Kopera, MA; Giraldo, FX, Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations, J Comput Phys, 275, 92-117, (2014) · Zbl 1349.76226
[185] Kopera MA, Giraldo FX (2014) Mass conservation of the unified continuous and discontinuous element-based Galerkin methods on dynamically adaptive grids with application to atmospheric simulations. J Comput Phys. doi:10.1016/j.jcp.2015.05.010 (to appear)
[186] Kopriva, DA, A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, J Comput Phys, 128, 475-488, (1996) · Zbl 0866.76064
[187] Krivodonova, L, Limiters for high-order discontinuous Galerkin methods, J Comput Phys, 226, 879-896, (2007) · Zbl 1125.65091
[188] Kühnlein, C; Smolarkiewicz, PK; Dörnbrack, A, Modelling atmospheric flows with adaptive moving meshes, J Comput Phys, 231, 2741-2763, (2012) · Zbl 1426.76390
[189] Kwizak, M; Robert, A, A semi-implicit scheme for grid point atmospheric models of the primitive equations, Mon Weather Rev, 99, 32-36, (1971)
[190] Lang, J; Cao, W; Huang, W; Russell, RD, A two-dimensional moving finite element method with local refinement based on a posteriori error estimates, Appl Numer Math, 46, 75-94, (2003) · Zbl 1022.65107
[191] Lanser, D; Blom, JG; Verwer, JG, Time integration of the shallow water equations in spherical geometry, J Comput Phys, 171, 373-393, (2001) · Zbl 1051.76047
[192] Laprise, R, The Euler equations of motion with hydrostatic pressure as an independent variable, Mon Weather Rev, 120, 197-207, (1992)
[193] Lauter, M; Giraldo, FX; Handorf, D; Dethloff, K, A discontinuous Galerkin method for the shallow water equations using spherical triangular coordinates, J Comput Phys, 227, 10226-10242, (2008) · Zbl 1218.76028
[194] Beau, GJ; Ray, SE; Aliabadi, SK; Tezduyar, TE, SUPG finite element computation of compressible flows with the entropy and conservation variables formulations, Comput Methods Appl Mech Eng, 104, 397-422, (1993) · Zbl 0772.76037
[195] Lee J, Bleck R, MacDonald A, Bao J, Benjamin S, Middlecoff J, Wang N, Brown J (2008) Fim: a vertically flow-following, finite-volume icosahedral model. In: 22nd Conference on weather analysis forecasting/18th conference on numerical weather prediction, Park City, UT, Am Meteorol Soc (preprints)
[196] Lee, JLL; MacDonald, AE, A finite-volume icosahedral shallow-water model on a local coordinate, Mon Weather Rev, 137, 1422-1437, (2009)
[197] Leonard, A, Energy cascade in large eddy simulations of turbulent fluid flows, Adv Geophys, 18, 237-248, (1974)
[198] Lesaint P, Raviart PA (1974) On a finite element method for solving the neutron transport equation. Academic Press, San Diego
[199] Levasseur V, Sagaut P, Chalot F, Davroux A (2006) An entropy-variable-based vms/gls method for the simulation of compressible flows on unstructured grids. Comput Methods Appl Mech Eng 195(9-12):1154-1179. doi:10.1016/j.cma.2005.04.009 · Zbl 1115.76050
[200] Ley, GW; Elsberry, RL, Forecasts of typhoon irma using a nested grid model, Mon Weather Rev, 104, 1154, (1976)
[201] Lilly, DK, On the numerical simulation of buoyant convection, Tellus, 14, 148-172, (1962)
[202] Lipps, F; Hemler, R, A scale analysis of deep moist convection and some related numerical calculations, J Atmos Sci, 29, 2192-2210, (1982)
[203] Lohner, R; Mut, F; Jebral, J; Aubry, R; Houzeaux, G, Deflated preconditioned conjugate gradient solvers for the pressure-Poisson equation: extensions and improvements, Int J Numer Methods Fluids, 87, 2-14, (2011) · Zbl 1242.76128
[204] Ma, H, A spectral element basin model for the shallow water equations, J Comput Phys, 109, 133-149, (1993) · Zbl 0790.76065
[205] Maday Y, Mavriplis C, Patera AT (1988) Nonconforming mortar element methods: application to spectral discretizations. Institute for Computer Applications in Science and Engineering, NASA Langley Research Center · Zbl 0692.65055
[206] Majewski, D; Liermann, D; Prohl, P; Ritter, B; Buchhold, M; Hanisch, T; Paul, G; Wergen, W, The operational global icosahedral-hexagonal gridpoint model GME: description and high-resolution tests, Mon Weather Rev, 130, 319-338, (2002)
[207] Marchuk GI (1974) Numerical methods in weather prediction. Academic Press, San Diego
[208] Marras S (2012) Variational multiscale stabilization of finite and spectral elements for dry and moist atmospheric problems. Ph.D. thesis, Universitat Politécnica de Catalunya · Zbl 0497.76041
[209] Marras, S; Giraldo, FX, A parameter-free dynamic alternative to hyper-viscosity for coupled transport equations: application to the simulation of 3D squall lines using spectral elements, J Comput Phys, 283, 360-373, (2015) · Zbl 1351.86003
[210] Marras, S; Kelly, JF; Giraldo, FX; Vázquez, M, Variational multiscale stabilization of high-order spectral elements for the advection-diffusion equation, J Comput Phys, 231, 7187-7213, (2012) · Zbl 1284.65119
[211] Marras S, Kopera M, Giraldo FX (2014) Simulation of shallow water jets with a unified element-based continuous/discontinuous Galerkin model with grid flexibility on the sphere. Q J R Meteorol Soc. doi:10.1002/qj.2474
[212] Marras, S; Moragues, M; Vázquez, M; Jorba, O; Houzeaux, G, A variational multiscale stabilized finite element method for the solution of the Euler equations of nonhydrostatic stratified flows, J Comput Phys, 236, 380-407, (2013) · Zbl 1286.65126
[213] Marras, S; Moragues, M; Vázquez, MR; Jorba, O; Houzeaux, G, Simulations of moist convection by a variational multiscale stabilized finite element method, J Comput Phys, 252, 195-218, (2013) · Zbl 1286.65126
[214] Marras S, Müller A, Giraldo, FX (2014) An LES-like stabilization of the spectral element solution of the Euler equations for atmospheric flows. In: WCCM XI—ECCM V—ECFD VI, Barcelona, Spain, pp 1-22 · Zbl 1074.76642
[215] Marras S, Müller A, Giraldo FX (2014) Physics-based stabilization of spectral elements for the 3d Euler equations of moist atmospheric convection. In: Proceedings of the ICOSAHOM 2014, LNCS, Salt Lake City, UT. Springer (accepted)
[216] Marras S, Nazarov M, Giraldo FX (2015) A stabilized spectral element method based on a dynamic SGS model for LES. Submitted for review (see pre-print). https://www.researchgate.net/publication/271526242_A_stabilized_spectral_element_method_based_on_a_dynamic_SGS_model_for_LES._Euler_and_non-linear_scalar_equations
[217] Mastin, CW; Thompson, JF, Transformation of three-dimensional regions onto rectangular regions by elliptic systems, Numer Math, 29, 397-407, (1978) · Zbl 0424.65048
[218] McGregor, JL; Dix, MR; Hodnett, PF (ed.), The CSIRO conformal-cubic atmospheric gcm, 197-202, (2001), Dordrecht · Zbl 1074.76642
[219] Mesinger, F; Janjic, Z; Nickovic, S; Gavrilov, D; Deaven, D, The step-mountain coordinate: model description and performance for cases of alpine Lee cyclogenesis and for a case of an Appalachian redevelopmen, Mon Weather Rev, 116, 1493-1518, (1988)
[220] Miyakoda, K; Rosati, A, One-way nested grid models: the interface conditions and the numerical accuracy, Mon Weather Rev, 105, 1092-1107, (1977)
[221] MMesh3D: a 3D elliptic mesh generation tool for simply connected domains with topography. http://mmesh3d.wikispaces.com/ (2010)
[222] Moragues M, Vázquez M, Houzeaux G, Aubry R (2010) Variational multiscale stabilization of compressible flows in parallel architectures. In: International conference on parallel CFD, Kaoshiung, Taiwan
[223] Morrison, H; Grabowski, WW, Modeling supersaturation and subgrid-scale mixing with two-moment bulk warm microphysics, J Atmos Sci, 65, 792-812, (2008)
[224] Müller, A; Behrens, J; Giraldo, FX; Wirth, V, Comparison between adaptive and uniform deiscontinuous Galerkin simulations in 2D dry bubble experiments, J Comput Phys, 235, 371-393, (2013)
[225] Nair, RD; Choi, HW; Tufo, HM, Computational aspects of a scalable high-order discontinuous Galerkin atmospheric dynamical core, Comput Fluids, 38, 309-319, (2009) · Zbl 1237.76129
[226] Nair RD, Levy MN, Lauritzen PH (2011) Emerging numerical methods for atmospheric modeling. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models. Lecture notes in computational science and engineering, vol 80. Springer, pp 251-311
[227] Nair, RD; Thomas, SJ; Loft, RD, A discontinuous Galerkin global shallow water model, Mon Weather Rev, 133, 876-888, (2005)
[228] Nair, RD; Thomas, SJ; Loft, RD, A discontinuous Galerkin transport scheme on the cubed sphere, Mon Weather Rev, 133, 814-828, (2005)
[229] Nazarov, M; Hoffman, J, Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods, Int J Numer Methods Fluids, 71, 339-357, (2013)
[230] Neale RB, Chen C, Gettelman A, Lauritzen PH, Park S, Williamson DL, Conley AJ, Garcia R, Kinnison D, Lamarque JF, Marsh D, Mills M, Smith AK, Tilmes S, Vitt F, Morrison H, Cameron-Smith P, Collins WD, Iacono MJ, Easter RC, Ghan SJ, Liu X, Rasch PJ, Taylor MA (2010) Description of the NCAR community atmosphere model (CAM 5.0). Tech. rep., National Center for Atmospheric Research, NCAR
[231] Norman MR (2013) Targeting atmosphjeric simulation algorithms for large, distributed-memory, GPU-accelerated computers. In: Yuen DA, Wang L, Chi X, Johnsson L, Ge W, Shi Y (eds) GPU solutions to multi-scale problems in science and engineering, Lecture notes in earth system sciences. Springer, pp 271-282 · Zbl 0866.76064
[232] Ockendon H, Ockendon JR (2004) Waves and compressible flow. Springer, Berlin · Zbl 1041.76001
[233] Ogura, Y; Phillips, N, Scale analysis of deep and shallow convection in the atmosphere, J Atmos Sci, 19, 173-179, (1962)
[234] Ouvrard H, Koobus B, Dervieux A, Salvetti MV (2010) Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput Fluids 39(7):1083-1094. doi:10.1016/j.compfluid.2010.01.017 · Zbl 1242.76080
[235] Patera, AT, A spectral method for fluid dynamics: laminar flow in a channel expansion, J Comput Phys, 54, 468-488, (1984) · Zbl 0535.76035
[236] Persson PO, Peraire J (2006) Sub-cell shock capturing for discontinuous Galerkin methods. In: Proceedings of the 44th AIAA aerospace sciences meeting and exhibit AIAA-2006-112
[237] Phillips, N, A coordinate system having some special advantages for numerical forecasting, J Meteorol, 14, 184-185, (1957)
[238] Pielke, R; Cotton, W; Walko, R; Tremback, C; Lyons, W; Grasso, L; Nicholls, M; Moran, M; Wesley, D; Lee, T; Copeland, J, A comprehensive meteorological modeling system—rams, Metorol Atmos Phys, 49, 69-91, (1992)
[239] Piggott, P; Pain, P; Gorman, GJ; Power, P; Goddard, AJH, H, r, and hr adaptivity with applications in numerical Ocean modelling, Ocean Model, 10, 95-113, (2005)
[240] Piomelli, U; Galperin, B (ed.); Orszag, SA (ed.), Application of LES in engineering: an overview, 119-137, (1993), Cambridge
[241] Pironneau, O; Liou, J; Tezduyar, T, Characteristic-Galerkin and Galerkin/least-squares space-time formulations for the advection-diffusion equation with time-dependent domains, Comput Methods Appl Mech Eng, 100, 117-141, (1992) · Zbl 0761.76073
[242] Priestley, A, The Taylor-Galerkin method for the shallow-water equations on the sphere, Mon Weather Rev, 120, 3003-3015, (1992)
[243] Proctor FH (1988) The terminal area simulation system, volume I: theoretical formulation. Tech. rep., NASA, Contractor Report 4046, DOT/FAA/PM-85/50 · Zbl 0279.65090
[244] Prusa, JM; Smolarkiewicz, PK; Wyszogrodzki, AA, EULAG, a computational model for multiscale flows, Comput Fluids, 37, 1193-1207, (2008) · Zbl 1237.76107
[245] Qaddouri, A; Pudykiewicz, J; Tanguay, M; Girard, C; Coté, J, Experiments with different discretizations for the shallow-water equations on a sphere, Q J R Meteorol Soc, 138, 989-1003, (2012)
[246] Quarteroni A, Sacco R, Saleri F (2000) Numerical mathematics, texts in applied mathematics, 1st edn. Springer, Berlin · Zbl 0957.65001
[247] Quarteroni A, Valli A (1994) Numerical approximation of partial differential equations. Springer, Berlin · Zbl 0803.65088
[248] Reed WH, Hill TR (1973) Triangular mesh methods for the neutron transport equation. Tech. Rep. 73, Los Alamos Scientific Laboratory—LA-UR-73-479 · Zbl 1391.76196
[249] Restelli, M; Giraldo, FX, A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling, SIAM J Sci Comput, 31, 2231-2257, (2009) · Zbl 1405.65127
[250] Richardson L (1922) Weather prediction by numerical process, 1st edn. Cambridge University Press, Cambridge · JFM 48.0629.07
[251] Rispoli, F; Saavedra, R, A stabilized finite element method based on sgs models for compressible flows, Comput Methods Appl Mech Eng, 196, 652-664, (2006) · Zbl 1120.76331
[252] Rispoli, F; Saavedra, R; Corsini, A; Tezduyar, TE, Computation of inviscid compressible flow with v-sgs stabilization and \(yzβ \) shock capturing, Int J Numer Methods Fluids, 54, 695-706, (2007) · Zbl 1207.76104
[253] Ritz, w, Über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik, J Reine Angew Math, 135, 1-61, (1909) · JFM 39.0449.01
[254] Ronquist, EM, Convection treatment using spectral elements of different order, Int J Numer Methods Fluids, 22, 241-264, (1996) · Zbl 0863.76059
[255] Rood RB, Space G, Earth DOTG, Lyster P, Sawyer W, Takacs LL (1997) Design of the goddard earth observing system (geos) parallel general circulation model (gcm) · Zbl 0536.65071
[256] Room R (2001) Nonhydrostatic adiabatic kernel for hirlam. Part i: Fundamentals of nonhydrostatic dynamics in pressure-related coordinates. Tech. Rep. 25, HIRLAM Technical Report—MeteoFr and Consortium
[257] Room R (2002) Nonhydrostatic adiabatic kernel for hirlam. Part III: semi-implicit eulerian scheme. Tech. Rep. 55, HIRLAM Technical Report—MeteoFr and Consortium
[258] Rosenberg, D; Fournier, A; Fischer, P; Pouquet, A, Geophysical-astrophysical spectral-element adaptive refinement (gaspar): object-oriented h-adaptive fluid dynamics simulation, J Comput Phys, 215, 59-80, (2006) · Zbl 1140.86300
[259] Russell, WS; Eiseman, PR, A boundary conforming structured grid for global Ocean circulation studies, Int J Numer Methods Fluids, 28, 761-788, (1998) · Zbl 0932.76076
[260] Sagaut P (2000) Large eddy simulation for incompressible flows. An introduction. Springer, Berlin · Zbl 0964.76002
[261] Saito, K; Fujita, T; Yamada, Y; Ishida, JI; Kumagai, Y; Aranami, K; Ohmori, S; Nagasawa, R; Kumagai, S; Muroi, C; Kato, T; Erro, H; Yamazaki, Y, The operational JMA nonhydrostatic mesoscale model, Mon Weather Rev, 134, 1266-1298, (2006)
[262] Satoh, M; Matsuno, T; Tomita, H; Miura, H; Nasuno, T; Iga, S, Nonhydrostatic icosahedral atmospheric model (nicam) for global cloud resolving simulations, J Comput Phys, 227, 3486-3514, (2008) · Zbl 1132.86311
[263] Schar, C; Leuenberger, D; Fuhrer, O; Luthic, D; Girard, C, A new terrain-following vertical coordinate formulation for atmospheric prediction models, Mon Weather Rev, 130, 2459-2480, (2002)
[264] Schwanenberg D, Kiem R, Kongeter J (2000) Discontinuous Galerkin method for the shallow water equations. Springer, Heidelberg, pp 289-309 · Zbl 1041.76512
[265] Sert, C; Beskok, A, Spectral element formulations on non-conforming grids: a comparative study of pointwise matching and integral projection methods, J Comput Phys, 211, 300-325, (2006) · Zbl 1120.65338
[266] Shahbazi, K; Fischer, PF; Ethier, CR, A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J Comput Phys, 222, 391-407, (2007) · Zbl 1216.76034
[267] Shakib, F; Hughes, TJR; Johan, Z, A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations, Comput Methods Appl Mech Eng, 89, 141-291, (1991) · Zbl 0838.76040
[268] Simmons, A; Burridge, D, An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates, Mon Weather Rev, 109, 758-766, (1981)
[269] Simons, T, A three-dimensional spectral prediction equation, J Atmos Sci, 127, 1-27, (1968)
[270] Skamarock, W; Klemp, J, Adaptive grid refinement for two-dimensional and three-dimensional nonhydrostatic atmospheric flow, Mon Weather Rev, 121, 788-804, (1993)
[271] Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J (2007) A description of the advanced research WRF version 2. Tech. Rep. 468, NCAR TN STR
[272] Skamarock, W; Oliger, J; Street, RL, Adaptive grid refinement for numerical weather prediction, J Comput Phys, 80, 27-60, (1989) · Zbl 0661.76021
[273] Skamarock, WC; Klemp, JB; Duda, MG; Fowler, LD; Park, SHH; Ringler, TD, A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and c-grid staggering, Mon Weather Rev, 140, 3090-3105, (2012)
[274] Smagorinsky, J, General circulation experiments with the primitive equations: I. the basic experiement, Mon Weather Rev, 91, 99-164, (1963)
[275] Smolarkiewicz, PK; Szmelter, J; Wyszogrodzki, AA, An unstructured-mesh atmospheric model for nonhydrostatic dynamics, J Comput Phys, 254, 184-199, (2013) · Zbl 1349.86013
[276] Soong, S; Ogura, Y, A comparison between axisymmetric abd slab-symmetric cumulus cloud models, J. Atmos. Sci., 30, 879-893, (1973)
[277] Soto, O; Lohner, R; Camelli, F, A linelet preconditioner for incompressible flow solvers, Int J Numer Methods Heat Fluid Flow, 13, 133-147, (2003) · Zbl 1059.76037
[278] St-Cyr, A; Jablonowski, C; Dennis, JM; Tufo, HM; Thomas, SJ, A comparison of two shallow-water models with nonconforming adaptive grids, Mon Weather Rev, 136, 1898-1922, (2008)
[279] Staniforth, A, The application of the finite-element method to meteorological simulations—a review, Int J Numer Methods Fluids, 4, 1-12, (1984) · Zbl 0538.76051
[280] Staniforth, AN; Mitchell, HL, A variable-resolution finite-element technique for regional forecasting with the primitive equations, Mon Weather Rev, 106, 439-447, (1978)
[281] Steppeler, J; Bitzer, H; Bonaventura, L, Nonhydrostatic atmospheric modelling using a z-coordinate representation, Mon Weather Rev, 130, 2143-2149, (2002)
[282] Steppeler, J; Hess, R; Schattler, U; Bonaventura, L, Review of numerical methods for nonhydrostatic weather prediction models, Meteorol Atmos Phys, 82, 287-301, (2003)
[283] Stevens, B; Giorgetta, M; Esch, M; Mauritsen, T; Crueger, T; Ras, S; Salzmann, M; Schmidt, H; Bader, J; Block, K; Brokopf, R; Fast, I; Kinne, S; Kornblueh, L; Lohmann, U; Pincus, R; Reichler, T; Roechner, E, Atmospheric component of the MPI-M Earth system model: ECHAM6, J Adv Model Earth Syst, 5, 146-172, (2013)
[284] Straka, J; Wilhelmson, R; Wicker, L; Anderson, J; Droegemeier, K, Numerical solution of a nonlinear density current: a benchmark solution and comparisons, Int J Numer Methods Fluids, 17, 1-22, (1993)
[285] Strang G, Fix GJ (1973) An analysis of the finite element method, vol 212. Wellesley-Cambridge, Wellesley · Zbl 0356.65096
[286] Sundqvist, H, On vertical interpolation and truncation in connection with the use of sigma system models, Atmosphere, 14, 37-52, (1976)
[287] Tabata, M, Uniform convergence of the upwind finite element approximation for semilinear parabolic problems, J Math Kyoto Univ, 18, 327-351, (1978) · Zbl 0391.65038
[288] Tabata, M, Some applications of the upwind finite element method, Theor Appl Mech, 27, 277-282, (1979)
[289] Tabata, M, Symmetric finite element approximations for convection-diffusion problems, Theor Appl Mech, 33, 445-453, (1985) · Zbl 0612.76096
[290] Tadmor, E, Convergence of spectral methods for nonlinear conservation laws, SIAM J Numer Anal, 26, 30-44, (1989) · Zbl 0667.65079
[291] Tanguay, M; Robert, A; Laprise, R, A semi-implicit semi-Lagrangian fully compressible regional forecast model, Mon Weather Rev, 118, 1970-1980, (1990)
[292] Tapp, MC; White, PW, A non-hydrostatic mesoscale model, Q J R Meteorol Soc, 102, 277-296, (1976)
[293] Tatsumi, Y, An economical explicit time integration scheme for a primitive model, J Meteorol Soc Jpn, 61, 269-287, (1983)
[294] Taylor, M; Tribbia, J; Iskandarani, M, The spectral element method for the shallow water equations on the sphere, J Comput Phys, 130, 92-108, (1997) · Zbl 0868.76072
[295] Tezduyar, T; Senga, M, SUPG finite element computation of inviscid supersonic flows with \(yzβ \) shock-capturing, Comput Fluids, 36, 147-159, (2007) · Zbl 1127.76029
[296] Thomas, SJ; Loft, R, The NCAR spectral element climate dynamical core: semi-implicit Eulerian formulation, J Sci Comput, 25, 307-322, (2005) · Zbl 1203.86013
[297] Thompson, JF; Mastin, CW; Thames, FC, Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies, J Comput Phys, 15, 299-319, (1974) · Zbl 0283.76011
[298] Thompson JF, Warsi ZUA, Mastin CW (1985) Numerical Grid Generation: foundations and applications. North-Holland, Amsterdam · Zbl 0598.65086
[299] Thuburn J (2011) Some basic dynamics relevant to the design of atmospheric model dynamical cores. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric Models, Lecture notes in computational science and engineering, vol 80. Springer, pp 3-27
[300] Thuburn J (2011) Vertical discretizations: some basic ideas. In: Lauritzen PH, Jablonowski C, Taylor MA, Nair RD (eds) Numerical techniques for global atmospheric models, Lecture notes in computational science and engineering, vol 80. Springer, pp 59-74
[301] Thuburn J, Cotter CJ (2015) A primal-dual mimetic finite element scheme for the rotating shallow water equations on polygonal spherical meshes. J Comput Phys 290:274-297 · Zbl 1349.76273
[302] Toro E (1999) Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer, Berlin · Zbl 0923.76004
[303] Tumolo, G; Bonaventura, L; Restelli, M, A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations, J Comput Phys, 232, 46-67, (2013) · Zbl 1291.65305
[304] Ullrich, P; Jablonowski, C, Mcore: a non-hydrostatic atmospheric dynamical core utilizing high-order finite-volume methods, J Comput Phys, 231, 5078-5108, (2012) · Zbl 1247.86007
[305] Untch, A; Hortal, M, A finite-element scheme for the vertical discretization of the semi-Lagrangian version of the ecmwf forecast model, Q J R Meteorol Soc, 130, 1505-1530, (2004)
[306] Bos, F; Vegt, JJ; Geurts, BJ, A multiscale formulation for compressible turbulent flow suitable for general variational discretization techniques, Comput Methods Appl Mech Eng, 196, 2863-2875, (2007) · Zbl 1177.76148
[307] Vandeven H (1991) Family of spectral filters for discontinuous problems. J Sci Comput 6:159-192 · Zbl 0752.35003
[308] Vázquez M, Houzeaux G, Korik S, Artigues A, Aguado-Sierra J, Aris R, Mira D, Calet H, Cucchietti F, Owen H, Taha A, Cela JM (2014) Alya: towards exascale for engineering simulation codes. arXiv:1404.4881
[309] Walko, RL; Avissar, R, The Ocean-land-atmosphere model (OLAM). part I: shallow-water tests, Mon Weather Rev, 136, 4033-4044, (2008)
[310] Walko, RL; Avissar, R, The Ocean-land-atmosphere model (OLAM). part II: formulation and tests of the nonydrostatic dynamic core, Mon Weather Rev, 136, 4045-4064, (2008)
[311] Wan, H; Giorgetta, MA; Zängl, G; Restelli, M; Majewski, D; Bonaventura, L; Fröhlich, K; Reinert, D; Rípodas, P; Kornblueh, L, The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids—part 1: formulation and performance of the baseline version, Geosci Model Dev Disc, 6, 59-119, (2013)
[312] Warburton, TC; Karniadakis, GE, A discontinuous Galerkin method for the viscous MHD equations, J Comput Phys, 152, 608-641, (1999) · Zbl 0954.76051
[313] Weller H, Shahrokhi A (2014) Curl free pressure gradients over orography in a solution of the fully compressibe Euler equations with implicit treatment of acoustic and gravity waves. Tech. rep., U. Reading, UK
[314] Weller, H; Lock, SJ; Wood, N, Runge-Kutta IMEX schemes for the horizontally explicit/vertically implicit (HEVI) solution of wave equations, J Comput Phys, 252, 365-381, (2013) · Zbl 1349.86015
[315] Weller, H; Ringler, T; Piggott, M; Wood, N, Challenges facing adaptive mesh modeling of the atmosphere and Ocean, Bull Am Meteorol Soc, 91, 105-108, (2010)
[316] Weller, H; Weller, H; Fournier, A, Voronoi, Delaunay, and block-structured mesh refinement for solution of the shallow-water equations on the sphere, Mon Weather Rev, 137, 4208-4224, (2009)
[317] White, AA; Hoskins, BJ; Roulstone, I; Staniforth, A, Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic, Q J R Meteorol Soc, 131, 2081-2107, (2005)
[318] Wicker, L; Skamarock, W, A time-splitting scheme for the elastic equations incorporating second-order Runge-Kutta time differencing, Mon Weather Rev, 126, 1992-1999, (1998)
[319] Wicker, L; Skamarock, W, Time-splitting methods for elastic models using forward time schemes, Mon Weather Rev, 130, 2088-2097, (2002)
[320] Wilcox, LC; Stadler, G; Burstedde, C; Ghattas, O, A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media, J Comput Phys, 229, 9373-9396, (2010) · Zbl 1427.74071
[321] Williamson, D, The evolution of dynamical cores for global atmospheric models, J Meteorol Soc Jpn, 85B, 241-269, (2007)
[322] Wood, N; Staniforth, A; White, A; Allen, T; Diamantakis, M; Gross, M; Melvin, T; Smith, C; Vosper, S; Zerroukat, M; Thuburn, J, An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations, Q J R Meteorol Soc, 140, 1505-1520, (2014)
[323] Xue, M; Droegemeier, K; Wong, V, The advanced regional prediction system (arps)—a multi-scale nonhydrostatic atmospheric simulation and prediction model. part i: model dynamics and verification, Meteorol Atmos Phys, 75, 161-193, (2000)
[324] Yang H (1985) Finite element structural analysis, international series in civil engineering and engineering mechanics, 1st edn. Prentice-Hall, Englewood Cliffs
[325] Yang, X; Hu, J; Chen, D; Zhang, H; Shen, X; Chen, J; Ji, L, Verification of GRAPES unified global and regional numerical weather prediction model dynamic core, Chin Sci Bull, 53, 3458-3464, (2008)
[326] Yeh, K; Coté, J; Gravel, S; Methot, A; Patoine, A; Roch, M; Staniforth, A, The CMC-MRB global environmental multiscale GEM model. part III: nonhydrostatic formulation, Mon Weather Rev, 130, 339-356, (2002)
[327] Yelash, L; Müller, A; Lukáčová-Medvid’ová, M; Giraldo, FX; Wirth, V, Adaptive discontinuous evolution Galerkin method for dry atmospheric flow, J Comput Phys, 268, 106-133, (2014) · Zbl 1349.76292
[328] Yu M, Giraldo FX, Peng M, Wang ZJ (2014) Localized artificial viscosity stabilization of discontinuous Galerkin m, ehods for nonhydrostatic mesoscale atmospheric modeling. Technical report, Kansas University
[329] Zhang, DL; Chang, HR; Seaman, NL; Warner, TT; Fritsch, JM, A two-way interactive nesting procedure with variable terrain resolution, Mon Weather Rev, 114, 1330-1339, (1986)
[330] Zhao, M; Held, I; Lin, S; Vecchi, G, Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM, J Clim, 22, 6653-6678, (2009)
[331] Zienkiewcz, O; Nithiarasu, P; Codina, R; Vázquez, M; Ortiz, P, The characteristic-based split procedure: an efficient and accurate algorithm for fluid problems, Int J Numer Methods Fluids, 31, 359-392, (1999) · Zbl 0985.76069
[332] Zienkiewicz, O; Codina, R, A general algorithm for compressible and incompressible flow—part i. the split, characteristic-based scheme, Int J Numer Methods Fluids, 20, 869-885, (1995) · Zbl 0837.76043
[333] Zienkiewicz O, Taylor R, Nithiarasu P (2005) The finite element method for fluid dynamics, 6th edn. Elsevier, Amsterdam · Zbl 1278.76006
[334] Zingan, V; Guermond, JL; Morel, J; Popov, B, Implementation of the entropy viscosity method with the discontinuous Galerkin method, Comput Methods Appl Math Eng, 253, 479-490, (2013) · Zbl 1297.76109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.