×

zbMATH — the first resource for mathematics

SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop. (English) Zbl 1360.81013
Summary: SecDec is a program which can be used for the factorization of dimensionally regulated poles from parametric integrals, in particular multi-loop integrals, and the subsequent numerical evaluation of the finite coefficients. Here we present version 3.0 of the program, which has major improvements compared to version 2: it is faster, contains new decomposition strategies, an improved user interface and various other new features which extend the range of applicability.

MSC:
81-04 Software, source code, etc. for problems pertaining to quantum theory
81-08 Computational methods for problems pertaining to quantum theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
81T18 Feynman diagrams
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Carter, J.; Heinrich, G., Secdec: A general program for sector decomposition, Comput. Phys. Commun., 182, 1566-1581, (2011) · Zbl 1262.81119
[2] Borowka, S.; Carter, J.; Heinrich, G., Numerical evaluation of multi-loop integrals for arbitrary kinematics with secdec 2.0, Comput. Phys. Commun., 184, 396-408, (2013)
[3] Borowka, S.; Heinrich, G., Massive non-planar two-loop four-point integrals with secdec 2.1, Comput. Phys. Commun., 184, 2552-2561, (2013) · Zbl 1349.81012
[4] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multi-loop integrals, Nuclear Phys., B585, 741-759, (2000) · Zbl 1042.81565
[5] Heinrich, G., Sector decomposition, Internat. J. Modern Phys., A23, 1457-1486, (2008) · Zbl 1153.81522
[6] Hepp, K., Proof of the bogolyubov-parasiuk theorem on renormalization, Comm. Math. Phys., 2, 301-326, (1966) · Zbl 1222.81219
[7] Roth, M.; Denner, A., High-energy approximation of one-loop Feynman integrals, Nuclear Phys., B479, 495-514, (1996)
[8] Bogner, C.; Weinzierl, S., Resolution of singularities for multi-loop integrals, Comput. Phys. Commun., 178, 596-610, (2008) · Zbl 1196.81010
[9] Gluza, J.; Kajda, K.; Riemann, T.; Yundin, V., Numerical evaluation of tensor Feynman integrals in Euclidean kinematics, Eur. Phys. J., C71, 1516, (2011)
[10] Smirnov, A.; Tentyukov, M., Feynman integral evaluation by a sector decomposition approach (FIESTA), Comput. Phys. Commun., 180, 735-746, (2009) · Zbl 1198.81044
[11] Smirnov, A.; Smirnov, V.; Tentyukov, M., FIESTA 2: parallelizeable multiloop numerical calculations, Comput. Phys. Commun., 182, 790-803, (2011) · Zbl 1214.81171
[12] Smirnov, A. V., FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions, Comput. Phys. Commun., 185, 2090-2100, (2014) · Zbl 1351.81078
[13] Borowka, S., Evaluation of multi-loop multi-scale integrals and phenomenological two-loop applications, (2014), Max Planck Institute for Physics/Technical University Munich, (Ph.D. thesis)
[14] Soper, D. E., Techniques for QCD calculations by numerical integration, Phys. Rev., D62, 014009, (2000)
[15] Binoth, T.; Heinrich, G.; Kauer, N., A numerical evaluation of the scalar hexagon integral in the physical region, Nuclear Phys., B654, 277-300, (2003) · Zbl 1010.81060
[16] Nagy, Z.; Soper, D. E., Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev., D74, 093006, (2006)
[17] Binoth, T.; Guillet, J. P.; Heinrich, G.; Pilon, E.; Schubert, C., An algebraic/numerical formalism for one-loop multi-leg amplitudes, J. High Energy Phys., 10, 015, (2005)
[18] Lazopoulos, A.; Melnikov, K.; Petriello, F., QCD corrections to tri-boson production, Phys. Rev., D76, 014001, (2007)
[19] A. Lazopoulos, K. Melnikov, F.J. Petriello, NLO QCD corrections to the production of t-tbar-Z in gluon fusion, arXiv:0709.4044 [hep-ph].
[20] Gong, W.; Nagy, Z.; Soper, D. E., Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev. D, 79, 033005, (2009)
[21] Becker, S.; Reuschle, C.; Weinzierl, S., Numerical NLO QCD calculations, J. High Energy Phys., 1012, 013, (2010) · Zbl 1294.81267
[22] Anastasiou, C.; Beerli, S.; Bucherer, S.; Daleo, A.; Kunszt, Z., Two-loop amplitudes and master integrals for the production of a Higgs boson via a massive quark and a scalar-quark loop, J. High Energy Phys., 01, 082, (2007)
[23] Anastasiou, C.; Beerli, S.; Daleo, A., Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically, J. High Energy Phys., 05, 071, (2007)
[24] Beerli, S., A new method for evaluating two-loop Feynman integrals and its application to Higgs production, (2008), ETH Zurich, Advisor: Zoltan Kunszt
[25] Panzer, E., On hyperlogarithms and Feynman integrals with divergences and many scales, J. High Energy Phys., 1403, 071, (2014)
[26] A. von Manteuffel, E. Panzer, R.M. Schabinger, A quasi-finite basis for multi-loop Feynman integrals, arXiv:1411.7392. · Zbl 1388.81378
[27] Smirnov, A. V.; Smirnov, V. A., Hepp and Speer sectors within modern strategies of sector decomposition, J. High Energy Phys., 05, 004, (2009)
[28] Kaneko, T.; Ueda, T., A geometric method of sector decomposition, Comput. Phys. Commun., 181, 1352-1361, (2010) · Zbl 1219.65014
[29] Tarasov, O. V., Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D, 54, 6479-6490, (1996) · Zbl 0925.81121
[30] Smirnov, V. A., Feynman integral calculus, (2006), Springer
[31] Landau, L. D., On analytic properties of vertex parts in quantum field theory, Nuclear Phys., 13, 181-192, (1959) · Zbl 0088.22004
[32] Nakanishi, N., Graph theory and Feynman integrals, (1971), Gordon and Breach New York · Zbl 0212.29203
[33] A. von Manteuffel, C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction, arXiv:1201.4330.
[34] Smirnov, A. V., FIRE5: a C++ implementation of Feynman integral reduction, Comput. Phys. Commun., 189, 182-191, (2014) · Zbl 1344.81030
[35] R. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv:1212.2685.
[36] Kaneko, T.; Ueda, T., Sector decomposition via computational geometry, PoS ACAT2010, 082, (2010)
[37] W. Bruns, B. Ichim, C. Söger, The power of pyramid decomposition in Normaliz, ArXiv e-prints arXiv:1206.1916.
[38] W. Bruns, B. Ichim, T. Römer, C. Söger, Normaliz. Algorithms for rational cones and affine monoids. Available from http://www.math.uos.de/normaliz.
[39] Cheng, H.; Wu, T., Expanding protons: scattering at high energies, (1987), The MIT Press
[40] Oda, T., Convex bodies and algebraic geometry, (1988), Springer
[41] Hahn, T., CUBA: A library for multidimensional numerical integration, Comput. Phys. Commun., 168, 78-95, (2005) · Zbl 1196.65052
[42] Agrawal, S.; Hahn, T.; Mirabella, E., Formcalc 7, J. Phys. Conf. Ser., 368, 012054, (2012)
[43] T. Hahn, Concurrent Cuba, arXiv:1408.6373.
[44] P. Gonnet, Increasing the reliability of adaptive quadrature using explicit interpolants, CoRR abs/1006.3962. URL http://arxiv.org/abs/1006.3962. · Zbl 1364.65061
[45] Galassi, M., GNU scientific library reference manual, (2009), Network Theory Ltd.
[46] Heinemeyer, S.; Hollik, W.; Weiglein, G., Feynhiggs: A program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun., 124, 76-89, (2000) · Zbl 0946.81506
[47] Heinemeyer, S.; Hollik, W.; Weiglein, G., The masses of the neutral CP - even Higgs bosons in the MSSM: accurate analysis at the two loop level, Eur. Phys. J., C9, 343-366, (1999)
[48] Degrassi, G.; Heinemeyer, S.; Hollik, W.; Slavich, P.; Weiglein, G., Towards high precision predictions for the MSSM Higgs sector, Eur. Phys. J., C28, 133-143, (2003)
[49] Frank, M.; Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach, J. High Energy Phys., 0702, 047, (2007)
[50] Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G., Feynhiggs: A program for the calculation of MSSM Higgs-boson observables - version 2.6.5, Comput. Phys. Commun., 180, 1426-1427, (2009) · Zbl 1198.81015
[51] Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G., High-precision predictions for the light CP-even Higgs boson mass of the MSSM, Phys. Rev. Lett., 112, 141801, (2014)
[52] Borowka, S.; Hahn, T.; Heinemeyer, S.; Heinrich, G.; Hollik, W., Momentum-dependent two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, Eur. Phys. J., C74, 2994, (2014)
[53] Frenkel, J.; Taylor, J., Asymptotic freedom in the axial and Coulomb gauges, Nuclear Phys. B, 109, 439, (1976)
[54] Curci, G.; Furmanski, W.; Petronzio, R., Evolution of parton densities beyond leading order: the nonsinglet case, Nuclear Phys. B, 175, 27, (1980)
[55] Mandelstam, S., Light cone superspace and the ultraviolet finiteness of the N=4 model, Nuclear Phys. B, 213, 149-168, (1983)
[56] Leibbrandt, G., The light cone gauge in Yang-Mills theory, Phys. Rev. D, 29, 1699, (1984)
[57] Bassetto, A.; Heinrich, G.; Kunszt, Z.; Vogelsang, W., The light cone gauge and the calculation of the two loop splitting functions, Phys. Rev. D, 58, 094020, (1998)
[58] Kawabata, S., A new version of the multidimensional integration and event generation package BASES/SPRING, Comp. Phys. Commun., 88, 309-326, (1995) · Zbl 0888.65019
[59] Mathematica, Copyright by Wolfram Research.
[60] Davydychev, A. I.; Kalmykov, M., Massive Feynman diagrams and inverse binomial sums, Nuclear Phys. B, 699, 3-64, (2004) · Zbl 1123.81388
[61] Bonciani, R.; Mastrolia, P.; Remiddi, E., Master integrals for the two loop QCD virtual corrections to the forward backward asymmetry, Nuclear Phys. B, 690, 138-176, (2004)
[62] Yuasa, F.; de Doncker, E.; Hamaguchi, N.; Ishikawa, T.; Kato, K., Numerical computation of two-loop box diagrams with masses, Comput. Phys. Commun., 183, 2136-2144, (2012) · Zbl 1296.81117
[63] Binoth, T.; Heinrich, G., Numerical evaluation of multi-loop integrals by sector decomposition, Nuclear Phys. B, 680, 375-388, (2004) · Zbl 1043.81630
[64] Heinrich, G.; Smirnov, V. A., Analytical evaluation of dimensionally regularized massive on-shell double boxes, Phys. Lett. B, 598, 55-66, (2004)
[65] Gehrmann, T.; Heinrich, G.; Huber, T.; Studerus, C., Master integrals for massless three-loop form factors: one- loop and two-loop insertions, Phys. Lett. B, 640, 252-259, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.