zbMATH — the first resource for mathematics

Finite-temperature orbital-free DFT molecular dynamics: coupling profess and quantum espresso. (English) Zbl 1360.81023
Summary: Implementation of orbital-free free-energy functionals in the Profess code and the coupling of Profess with the Quantum Espresso code are described. The combination enables orbital-free DFT to drive ab initio molecular dynamics simulations on the same footing (algorithms, thermostats, convergence parameters, etc.) as for Kohn-Sham (KS) DFT. All the non-interacting free-energy functionals implemented are single-point: the local density approximation (LDA; also known as finite-T Thomas-Fermi, ftTF), the second-order gradient approximation (SGA or finite-T gradient-corrected TF), and our recently introduced finite-T generalized gradient approximations (ftGGA). Elimination of the KS orbital bottleneck via orbital-free methodology enables high-T simulations on ordinary computers, whereas those simulations would be costly or even prohibitively time-consuming for KS molecular dynamics (MD) on very high-performance computer systems. Example MD simulations on H over a temperature range \(2000 \operatorname{K} \leq \operatorname{T} \leq \text{4,000,000} \operatorname{K}\) are reported, with timings on small clusters (16-128 cores) and even laptops. With respect to KS-driven calculations, the orbital-free calculations are between a few times through a few hundreds of times faster.

81-08 Computational methods for problems pertaining to quantum theory
81V70 Many-body theory; quantum Hall effect
Full Text: DOI
[1] Kohn, W.; Sham, L. J., Phys. Rev., 140, A1133, (1965)
[2] Barnett, R. N.; Landman, U., Phys. Rev. B, 48, 2081, (1993)
[3] Marx, D.; Hutter, J., Ab initio molecular dynamics: theory and implementation, (Grotendorst, J., Modern Methods and Algorithms of Quantum Chemistry, NIC Series, vol. 1, (2000), John von Neumann Institute for Computing, (Jülich)), 301, and references therein
[4] Tse, J. S., Annu. Rev. Phys. Chem., 53, 249, (2002)
[5] Marx, D.; Hutter, J., Ab initio molecular dynamics: basic theory and advanced methods, (2009), Cambridge University Press Cambridge, and references therein
[6] T.D. Kühne, Ab-Initio Molecular Dynamics. arXiv:1201.5945 [physics.chem-ph].
[7] L.A. Collins, (Los Alamos National Lab), Equilibrium and Non-equilibrium Orbital-free Molecular Dynamics Simulations at Extreme Conditions, CECAM Workshop, Paris, 05 Sept. 2012.
[8] D.O. Gericke, (Univ. Warwick) Effective Interactions and Ion Dynamics in Warm Dense Matter, Invited Talk I8, Physics of Non-ideal Plasmas 14, Rostock Germany, 11 Sept. 2012.
[9] Kin-Lic Chan, G.; Cohen, A. J.; Handy, N. C., J. Chem. Phys., 114, 631, (2001)
[10] Karasiev, V. V.; Trickey, S. B., Comput. Phys. Commun., 183, 2519, (2012)
[11] Zérah, G.; Clérouin, J.; Pollock, E. L., Phys. Rev. Lett., 69, 446, (1992)
[12] Lambert, F.; Clérouin, J.; Zérah, G., Phys. Rev. E, 73, 016403, (2006)
[13] Lambert, F.; Clérouin, J.; Danel, J.-F.; Kazandjian, L.; Zérah, G., Phys. Rev. E, 77, 026402, (2008)
[14] Ho, G. S.; Lignères, V. L.; Carter, E. A., Comput. Phys. Commun., 179, 839, (2008)
[15] Hung, L.; Huang, C.; Shin, I.; Ho, G. S.; Lignères, V. L.; Carter, E. A., Comput. Phys. Commun., 181, 2208, (2010)
[16] Version 7.6 of the AbInit code [54] has what appears to be developer-level support of OF-DFT at the simplest finite-T Thomas-Fermi level. In private communication, E. Bylaska has informed us that some zero-T OF-DFT support is in the developer version of the periodic, plane wave package of the NWChem suite [55].
[17] Thomas, L. H., Proc. Cambridge Phil. Soc., 23, 542, (1927)
[18] Fermi, E., Atti Accad. Nazl. Lincei, 6, 602, (1927)
[19] von Weizsäcker, C. F., Z. Phys., 96, 431, (1935)
[20] Wang, Y. A.; Carter, E. A., Orbital-free kinetic-energy density functional theory, (Schwartz, S. D., Theoretical Methods in Condensed Phase Chemistry, (2000), Kluwer NY), 117, and references therein (Chapter 5)
[21] Karasiev, V. V.; Trickey, S. B.; Harris, F. E., J. Comput.-Aided Mat. Des., 13, 111, (2006)
[22] Karasiev, V. V.; Jones, R. S.; Trickey, S. B.; Harris, F. E., Phys. Rev. B, Phys. Rev. B, 87, 239902, (2013), (erratum)
[23] Karasiev, V. V.; Sjostrom, T.; Trickey, S. B., Phys. Rev. B, 86, 115101, (2012)
[24] Karasiev, V. V.; Chakraborty, D.; Shukruto, O. A.; Trickey, S. B., Phys. Rev. B, 88, 161108(R), (2013)
[25] Karasiev, V. V.; Sjostrom, T.; Dufty, J.; Trickey, S. B., Phys. Rev. Lett., 112, 076403, (2014)
[26] Perrot, F.; Dharma-Wardana, M. W.C., Phys. Rev. A, 30, 2619, (1984)
[27] Perrot, F.; Dharma-Wardana, M. W.C.; Perrot, F.; Dharma-Wardana, M. W.C., Phys. Rev. B, Phys. Rev. B, 67, 079901, (2003)
[28] Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Chiarotti, Guido L.; Cococcioni, Matteo; Dabo, Ismaila; Corso, Andrea Dal; de Gironcoli, Stefano; Fabris, Stefano; Fratesi, Guido; Gebauer, Ralph; Gerstmann, Uwe; Gougoussis, Christos; Kokalj, Anton; Lazzeri, Michele; Martin-Samos, Layla; Marzari, Nicola; Mauri, Francesco; Mazzarello, Riccardo; Paolini, Stefano; Pasquarello, Alfredo; Paulatto, Lorenzo; Sbraccia, Carlo; Scandolo, Sandro; Sclauzero, Gabriele; Seitsonen, Ari P.; Smogunov, Alexander; Umari, Paolo; Wentzcovitch, Renata M., J. Phys.: Condens. Matter., 21, 395502, (2009)
[29] Karasiev, V. V.; Sjostrom, T.; Chakraborty, D.; Dufty, J. W.; Runge, K.; Harris, F. E.; Trickey, S. B., Innovations in finite-temperature density functionals, (Graziani, F.; Desjarlais, M. P.; Redmer, R.; Trickey, S. B., Frontiers and Challenges in Warm Dense Matter, Lecture Notes in Computational Science and Engineering, vol. 96, (2014), Springer), 61
[30] Mermin, N. D., Phys. Rev., 137, A1441, (1965)
[31] Stoitsov, M. V.; Petkov, I. Zh., Ann. Physics, 185, 121, (1988)
[32] Feynman, R. P.; Hellman, J., Einfuhrung in die quantenchemie, Phys. Rev., 56, 340, (1937), Deuticke and Company Leipzig
[33] Feynman, R. P.; Metropolis, N.; Teller, E., Phys. Rev., 75, 1561, (1949)
[34] Bartel, J.; Brack, M.; Durand, M., Nuclear Phys. A, 445, 263, (1985)
[35] Constantin, L. A.; Fabiano, E.; Laricchia, S.; Della Sala, F., Phys. Rev. Lett., 106, 186406, (2011)
[36] Tran, F.; Wesolowski, T. A., Int. J. Quantum Chem., 89, 441, (2002)
[37] Perrot, F., Phys. Rev. A, 20, 586, (1979)
[38] Perdew, J. P.; Zunger, A., Phys. Rev. B, 23, 5048, (1981)
[39] Perdew, J. P.; Burke, K.; Ernzerhof, M., Phys. Rev. Lett., Phys. Rev. Lett., 78, 1396, (1997), (erratum)
[40] Karasiev, V. V.; Sjostrom, T.; Trickey, S. B., Phys. Rev. E, 86, 056704, (2012)
[41] Brown, E. W.; Clark, B. K.; DuBois, J. L.; Ceperley, D. M., Phys. Rev. Lett., 110, 146405, (2013)
[42] Sensitivity of Pressure to the Accuracy of Evaluation of the Exchange-Correlation Free-energy Potential, V.V. Karasiev, T. Sjostrom, and S.B. Trickey, U. Florida, March 2013 (unpublished).
[43] Vosko, S. H.; Wilk, L.; Nusair, M., Can. J. Phys., 58, 1200, (1980)
[44] Hedin, L.; Lundqvist, B. I., J. Phys. C, 4, 2064, (1971)
[45] MacDonald, A. H.; Dharma-Wardana, M. W.C.; Geldart, D. J.W., J. Phys. F, 10, 1719, (1980)
[46] Heine, V.; Weaire, D., Phys. Rev., 152, 603, (1966)
[47] Heine, V.; Abarenkov, I. V., Phil. Mag., 9, 451, (1964)
[48] Topp, W. C.; Hopfield, J. J., Phys. Rev. B, 7, 1295, (1973)
[49] Goodwin, L.; Needs, R. J.; Heine, V., J. Phys.: Condens. Matter., 2, 351, (1990)
[50] Wang, L.-W.; Teter, M. P., Phys. Rev. B, 45, 13196, (1992)
[51] http://www.qtp.ufl.edu/ofdft/research/computation.shtml.
[52] Frigio, M.; Johnson, S. G., Proc. IEEE, 93, 216, (2005)
[53] Hung, L.; Carter, E. A., Chem. Phys. Lett., 475, 163, (2009)
[54] Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Cote, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M. J.T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W.; Gonze, X.; Rignanese, G.-M.; Verstraete, M.; Beuken, J.-M.; Pouillon, Y.; Caracas, R.; Jollet, F.; Torrent, M.; Zerah, G.; Mikami, M.; Ghosez, Ph.; Veithen, M.; Raty, J.-Y.; Olevano, V.; Bruneval, F.; Reining, L.; Godby, R.; Onida, G.; Hamann, D. R.; Allan, D. C., Comput. Phys. Commun., Zeit. Kristallogr., 220, 558, (2005)
[55] Valieva, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.; Straatsma, T. P.; Van Dam, H. J.J.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T. L.; de Jong, W. A., Comput. Phys. Commun., 181, 1477, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.