Almazov, M. On the behaviour of the solution of the stochastic diffusion equation in case of unbounded growth of the drift coefficient on a finite segment. (Russian) Zbl 0672.60057 Teor. Veroyatn. Mat. Stat., Kiev 39, 3-4 (1988). The paper gives the transient probability of the limit process to which the diffusion process \(\xi_ n\) converges in the sense of finite- dimensional distributions. The diffusion process \(\xi_ n\) has the drift coefficient \(a_ n(x)=\alpha_ nI_{[a,b]}(x)\), \(a<b\), \(\alpha_ n\uparrow \infty\), and the diffusion coefficient is equal to 1. Reviewer: L.Gal’chuk Cited in 1 Review MSC: 60H10 Stochastic ordinary differential equations (aspects of stochastic analysis) 60J60 Diffusion processes 60F15 Strong limit theorems Keywords:convergence of finite-dimensional distributions; diffusion process PDFBibTeX XMLCite \textit{M. Almazov}, Teor. Veroyatn. Mat. Stat., Kiev 39, 3--4 (1988; Zbl 0672.60057)