On CSCS-based iteration method for tempered fractional diffusion equations. (English) Zbl 1373.65058

The authors use a CSCS (circulant and skew-circulant splitting) iteration method to solve linear systems arising from the discretization by finite difference methods for time fractional differential equations in one space dimension. The method is shown to be unconditionally convergent and the convergence rate is fast in numerical tests. In each iteration, a circulant system and a skew-circulant system are required to be solved which cost only \(O(N\log N)\) operations by the fast Fourier transform, where \(N\) is the number of interior mesh points in space. Moreover, the induced preconditioner possesses circulant-times-skew-circulant structure so that it can be inverted in \(O(N\log N)\) operation. Some numerical experiments are presented in which the preconditioner performs well with a simple choice of the method parameter.


65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
65T50 Numerical methods for discrete and fast Fourier transforms
35K05 Heat equation
35R11 Fractional partial differential equations
65F08 Preconditioners for iterative methods


Full Text: DOI


[1] Baeumera, B; Meerschaert, MM, Tempered stable Lévy motion and transient super-diffusion, J. Comput. Appl. Math., 233, 2438-2448, (2010) · Zbl 1423.60079
[2] Bai, Z-Z; Golub, GH; Ng, MK, On successive overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. Linear Algebra Appl., 14, 319-335, (2007) · Zbl 1199.65097
[3] Bai, Z-Z; Golub, GH; Ng, MK, Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24, 603-626, (2003) · Zbl 1036.65032
[4] Cartea, Á; del-Castillo-Negrete, D, Fluid limit of the continuous-time random walk with general Lévy jump distribution functions, Phys. Rev. E, 76, 041105, (2007)
[5] Chakrabarty, Á; Meerschaert, MM, Tempered stable laws as random walk limits, Stat. Probab. Lett., 81, 989-997, (2011) · Zbl 1225.60028
[6] Chan, R., Jin, X.Q.: An introduction to iterative Toeplitz solvers. SIAM (2007) · Zbl 1146.65028
[7] Carr, P; Geman, H; Madan, DB; Yor, M, The fine structure of asset returns: an empirical investigation, J. Bus., 75, 303-325, (2002)
[8] Carr, P; Geman, H; Madan, DB; Yor, M, Stochastic volatility for Lévy processes, Math. Finance, 13, 345-382, (2003) · Zbl 1092.91022
[9] Davis, P.: Circulant matrices. Wiley, New York (1979) · Zbl 0418.15017
[10] Horn, R.A., Johnson, C.R.: Topic in matrix analysis. Cambridge University Press, Cambridge (1991)
[11] Lei, SL; Sun, HW, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242, 715-725, (2013) · Zbl 1297.65095
[12] Li, C; Deng, WH, High order schemes for the tempered fractional diffusion equations, Adv. Comput. Math., 42, 543-572, (2016) · Zbl 1347.65136
[13] Lin, FR; Yang, SW; Jin, XQ, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys., 256, 109-117, (2014) · Zbl 1349.65314
[14] Meerschaert, MM; Zhang, Y; Baeumer, B, Tempered anomalous diffusions in heterogeneous systems, Geophys. Res. Lett., 35, l17403-l17407, (2008)
[15] Metzler, R; Klafter, J, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37, r161-r208, (2004) · Zbl 1075.82018
[16] Moroney, T; Yang, Q, A banded preconditioner for the twosided, nonlinear space-fractional diffusion equation, Comput. Math. Appl., 66, 659-667, (2013) · Zbl 1346.35219
[17] Ng, MK, Circulant and skew-circulant splitting methods for Toeplitz systems, J. Comput. Appl. Math., 159, 101-108, (2003) · Zbl 1033.65014
[18] Pan, JY; Ke, R; Ng, MK; Sun, HW, Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM J. Sci. Comput., 36, a2698-a2719, (2014) · Zbl 1314.65112
[19] Pang, HK; Sun, HW, Multigrid method for fractional diffusion equations, J. Comput. Phys., 231, 693-703, (2012) · Zbl 1243.65117
[20] Qu, W; Lei, SL; Vong, SW, Circulant and skew-circulant splitting iteration for fractional advection-diffusion equations, Int. J. Comput. Math., 91, 2232-2242, (2014) · Zbl 1303.26010
[21] Ran, YH; Wang, JG, On ADI-like iteration method for fractional diffusion equations, Linear Algebra Appl., 493, 544-555, (2016) · Zbl 1329.65072
[22] Sabzikar, F; Meerschaert, MM; Chen, J, Tempered fractional calculus, J. Comput. Phys., 293, 14-28, (2015) · Zbl 1349.26017
[23] Wang, H., Wang, K., Sircar, T.: A direct \({\cal{O}}(N\log ^{2} N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095-8104 (2010) · Zbl 1198.65176
[24] Wang, H; Basu, TS, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput., 34, a2444-a2458, (2012) · Zbl 1256.35194
[25] Wang, WF; Chen, X; Ding, D; Lei, SL, Circulant preconditioning technique for barrier options pricing under fractional diffusion models, Int. J. Comput. Math., 92, 2596-2614, (2015) · Zbl 1337.91130
[26] Zhang, H; Liu, F; Turner, I; Chen, S, The numerical simulation of the tempered fractional Black-Scholes equation for European double barrier option, Appl. Math. Model., 40, 5819-5834, (2016)
[27] Zhang, Y; Meerschaert, MM, Gaussian setting time for solute transport in fluvial systems, Water Resour. Res., 47, w08601, (2011)
[28] Zhang, Y; Meerschaert, MM; Packman, AI, Linking fluvial bed sediment transport across scales, Geophys. Res. Lett., 39, l20404, (2012)
[29] Zheng, M; Karniadakis, GE, Numerical methods for SPDEs with tempered stable processes, SIAM J. Sci. Comput., 37, a1197-a1217, (2015) · Zbl 1320.65020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.