zbMATH — the first resource for mathematics

Robust stability optimization for linear delay systems in a probabilistic framework. (English) Zbl 1362.65043
Summary: This paper is concerned with an eigenvalue based stabilization method for linear autonomous delay systems with uncertain parameters, modeled by a random vector. The dependence of the characteristic matrix on the uncertain parameters can be nonlinear; also delay values can be subject to uncertainty. Unlike the stability optimization methods for deterministic problems, which minimize the spectral abscissa, our approach shows better robust properties based on a more realistic model, where the uncertainty is taken into account by minimizing an objective function, consisting of the mean of the spectral abscissa with a variance penalty. The properties of the spectrum of delay differential algebraic equations of retarded type are analyzed and an integration method to compute the mean and variance of the spectral abscissa, which describes the stability property of the system, is presented. Subsequently the analysis of the behavior of the gradient of the characteristic roots is addressed, and a suitable explicit formula of the gradient of the objective function is presented. Finally, for designing the controller a suitable optimization routine, requiring the objective function and its gradient, is presented. The efficacy of the method is illustrated with numerical examples, including a model of an experimental heat-exchanger. The algorithms developed are publicly available.
Reviewer: Reviewer (Berlin)

65F15 Numerical computation of eigenvalues and eigenvectors of matrices
90C31 Sensitivity, stability, parametric optimization
60H35 Computational methods for stochastic equations (aspects of stochastic analysis)
Full Text: DOI
[1] Erneux, T., Applied delay differential equations, (2008), Springer New York
[2] Hale, J. K.; Verduyn Lune, S. M., Introduction to functional differential equations, (2013), Springer New York
[3] Breda, D.; Maset, S.; Vermiglio, R., Stability of linear delay differential equations, (2014), Springer New York · Zbl 1269.35012
[4] Michiels, W.; Niculescu, S.-I., Stability, control, and computation for time-delay systems, (2015), SIAM
[5] (Sipahi, R.; Vyhlídal, T.; Niculescu, S. I.; Pepe, P., Time Delay Systems: Methods, Applications and New Trends, (2012), Springer-Verlag Berlin, Heidelberg) · Zbl 1235.93006
[6] (Loiseau, J. J.; Michiels, W.; Niculescu, S. I.; Sipahi, R., Topics in Time Delay Systems, (2009), Springer-Verlag Berlin, Heidelberg)
[7] Vyhlídal, T.; Olgac, N.; Kučera, V., Delayed resonator with acceleration feedback-complete stability analysis by spectral methods and vibration absorber design, J. Sound Vib., 333, 25, 6781-6795, (2014)
[8] Vyhlídal, T.; Hromčík, M., Parameterization of input shapers with delays of various distribution, Automatica, 59, 256-263, (2015) · Zbl 1326.93053
[9] (Diehl, M.; Mombaur, K., Fast Motions in Biomechanics and Robotics, (2006), Springer Berlin, Heidelberg) · Zbl 1100.70002
[10] Gumussoy, S.; Michiels, W., Fixed-order h-infinity control for interconnected systems using delay differential algebraic equations, SIAM J. Control Optim., 49, 5, 2212-2238, (2011) · Zbl 1234.93038
[11] Du, N. H.; Linh, V. H.; Mehrmann, V.; Thuan, D. D., Stability and robust stability of linear time-invariant delay differential-algebraic equations, SIAM J. Matrix Anal. Appl., 34, 4, 1631-1654, (2013) · Zbl 1326.34117
[12] Campbell, S. L., Singular linear systems of differential equations with delays, Appl. Anal., 11, 2, 129-136, (1980) · Zbl 0444.34062
[13] Overton, M. L., Stability optimization for polynomials and matrices, (Spectral Analysis, Stability and Bifurcations, (2014), Wiley-Blackwell), 351-375
[14] Michiels, W.; Engelborghs, K.; Vansevenant, P.; Roose, D., Continuous pole placement for delay equations, Automatica, 38, 5, 747-761, (2002) · Zbl 1034.93026
[15] Vanbiervliet, J.; Verheyden, K.; Michiels, W.; Vandewalle, S., A nonsmooth optimisation approach for the stabilisation of time-delay systems, ESAIM Control Optim. Calc. Var., 14, 3, 478-493, (2007) · Zbl 1146.65056
[16] Rostami, M. W., New algorithms for computing the real structured pseudospectral abscissa and the real stability radius of large and sparse matrices, SIAM J. Sci. Comput., 37, 5, 447-471, (2015) · Zbl 1325.65067
[17] Michiels, W.; Guglielmi, N., An iterative method for computing the pseudospectral abscissa for a class of nonlinear eigenvalue problems, SIAM J. Sci. Comput., 34, 4, 2366-2393, (2012)
[18] Guglielmi, N.; Lubich, C., Low-rank dynamics for computing extremal points of real pseudospectra, SIAM J. Matrix Anal. Appl., 34, 1, 40-66, (2013) · Zbl 1272.65032
[19] Meerbergen, K.; Michiels, W.; Beeumen, R. V.; Mengi, E., Computation of pseudospectral abscissa for large-scale nonlinear eigenvalue problems, IMA J. Numer. Anal., (2017), in press · Zbl 1433.65270
[20] Mengi, E.; Yildirim, E. A.; Kiliç, M., Numerical optimization of eigenvalues of Hermitian matrix functions, SIAM J. Matrix Anal. Appl., 35, 2, 699-724, (2014) · Zbl 1307.65043
[21] Gumussoy, S.; Overton, M. L., Fixed-order \(\mathcal{H}^\infty\) controller design via HIFOO, a specialized nonsmooth optimization package, (Decision and Control, (2008), Institute of Electrical & Electronics Engineers (IEEE)), 4135-4140
[22] Vanbiervliet, J.; Vandereycken, B.; Michiels, W.; Vandewalle, S.; Diehl, M., The smoothed spectral abscissa for robust stability optimization, SIAM J. Optim., 20, 1, 156-171, (2009) · Zbl 1185.93110
[23] Diehl, M.; Mombaur, K.; Noll, D., Stability optimization of hybrid periodic systems via a smooth criterion, IEEE Trans. Automat. Control, 54, 8, 1875-1880, (2009) · Zbl 1367.93391
[24] Engelborghs, K.; Luzyanina, T.; Roose, D., Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL, ACM Trans. Math. Software, 28, 1, 1-21, (2002) · Zbl 1070.65556
[25] Xiu, D.; Karniadakis, G. E., The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24, 2, 619-644, (2002) · Zbl 1014.65004
[26] R. Vermiglio, Polynomial chaos expansions for the stability analysis of uncertain delay differential equations, 2016. · Zbl 1416.65225
[27] Michiels, W., Spectrum-based stability analysis and stabilisation of systems described by delay differential algebraic equations, IET Control Theory Appl., 5, 16, 1829-1842, (2011)
[28] Schreiber, K., Nonlinear eigenvalue problems: Newton-type methods and nonlinear Rayleigh functionals, (2008), Ph.D. thesis · Zbl 1213.65064
[29] Dick, J.; Kuo, F. Y.; Sloan, I. H., High-dimensional integration: the quasi-Monte Carlo way, Acta Numer., 22, 133-288, (2013) · Zbl 1296.65004
[30] Morokoff, W. J.; Caflisch, R. E., Quasi-Monte Carlo integration, J. Comput. Phys., 122, 2, 218-230, (1995) · Zbl 0863.65005
[31] Caflisch, R. E., Monte Carlo and quasi-Monte Carlo methods, Acta Numer., 7, 1-49, (1988) · Zbl 0949.65003
[32] Breda, D.; Maset, S.; Vermiglio, R., Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27, 2, 482-495, (2005) · Zbl 1092.65054
[33] Talvila, E., Necessary and sufficient conditions for differentiating under the integral sign, Amer. Math. Monthly, 108, 6, 544-548, (2001) · Zbl 0990.26008
[34] Hryniv, R.; Lancaster, P., On the perturbation of analytic matrix functions, Integral Equations Operator Theory, 34, 3, 325-338, (1999) · Zbl 0940.47008
[35] Michiels, W.; Boussaada, I.; Niculescu, S. I., An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems, and connections with the linearization for the delay eigenvalue problem, SIAM J. Matrix Anal. Appl., (2017), submitted for publication · Zbl 06734980
[36] Fenzi, L.; Michiels, W., A Matlab tool for the optimization of uncertain delay differential equations (uddae_optimization), (2016)
[37] Vyhlídal, T.; Zítek, P.; Paulů, K., Design, modelling and control of the experimental heat transfer set-up, (Topics in Time Delay Systems, (2009), Springer-Verlag Berlin, Heidelberg), 303-313
[38] Michiels, W.; Vyhlídal, T.; Zítek, P., Control design for time-delay systems based on quasi-direct pole placement, J. Process Control, 20, 3, 337-343, (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.