×

zbMATH — the first resource for mathematics

A 4th-order particle-in-cell method with phase-space remapping for the Vlasov-Poisson equation. (English) Zbl 06724614

MSC:
35 Partial differential equations
65 Numerical analysis
76 Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. J. Turk, B. D. Smith, J. S. Oishi, S. Skory, S. W. Skillman, T. Abel, and M. L. Norman, yt: A multi-code analysis toolkit for astrophysical simulation data, Astrophys. J. Suppl. Ser., 192 (2011), p. 9.
[2] E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open Source Scientific Tools for Python, 2001, .
[3] F. Pérez and B. E. Granger, IPython: A system for interactive scientific computing, Comput. Sci. Engrg., 9 (2007), pp. 21–29.
[4] S. van der Walt, S. C. Colbert, and G. Varoquaux, The numpy array: A structure for efficient numerical computation, Comput. Sci. Engrg., 13 (2011), pp. 22–30.
[5] J. D. Hunter, Matplotlib: A 2d graphics environment, Comput. Sci. Engrg., 9 (2007), pp. 90–95.
[6] F. Filbet and E. Sonnendrücker, Comparison of Eulerian Vlasov solvers, Comput. Phys. Comm., 150 (2003), pp. 247–266. · Zbl 1196.82108
[7] J. W. Banks and J. A. F. Hittinger, A new class of nonlinear finite-volume methods for Vlasov simulation, IEEE Trans. Plasma Sci., 38 (2010), pp. 2198–2207.
[8] G. V. Vogman, P. Colella, and U. Shumlak, Dory-Guest-Harris instability as a benchmark for continuum kinetic Vlasov-Poisson simulations of magnetized plasmas, J. Comput. Phys., 277 (2014), pp. 101–120. · Zbl 1349.82127
[9] R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, Taylor & Francis, New York, 1988. · Zbl 0662.76002
[10] K. Heitmann, P. M. Ricker, M. S. Warren, and S. Habib, Robustness of cosmological simulations. I. Large-scale structure, Astrophys. J. Suppl. Ser., 160 (2005), pp. 28–58.
[11] D. P. Grote, A. Friedman, J.-L. Vay, and I. Haber, The WARP code: Modeling high intensity ion beams, in Electron Cyclotron Resonance Ion Sources: 16th International Workshop on ECR Ion Sources (Berkeley, CA), Amer. Inst. Phys. Conf. Ser. 749, M. Leitner, ed., American Institute of Physics, Melville, NY, 2005, pp. 55–58.
[12] G.-H. Cottet and P. D. Koumoutsakos, Vortex Methods: Theory and Practice, Cambridge University Press, Cambridge, UK, 2000. · Zbl 1140.76002
[13] A. K. Chaniotis, D. Poulikakos, and P. Koumoutsakos, Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows, J. Comput. Phys., 182 (2002), pp. 67–90. · Zbl 1048.76046
[14] N. Crouseilles, T. Respaud, and E. Sonnendrücker, A forward semi-Lagrangian method for the numerical solution of the Vlasov equation, Comput. Phys. Comm., 180 (2009), pp. 1730–1745. · Zbl 1197.82012
[15] B. Wang, G. H. Miller, and P. Colella, A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas, SIAM J. Sci. Comput., 33 (2011), pp. 3509–3537, . · Zbl 1232.76046
[16] B. Wang, G. Miller, and P. Colella, An adaptive, high-order phase-space remapping for the two dimensional Vlasov–Poisson equations, SIAM J. Sci. Comput., 34 (2012), pp. B909–B924, . · Zbl 1426.76578
[17] S. Williams, A. Waterman, and D. Patterson, Roofline: An insightful visual performance model for multicore architectures, Comm. ACM, 52 (2009), pp. 65–76.
[18] E. Edwards and R. Bridson, A high-order accurate particle-in-cell method, Internat. J. Numer. Methods Engrg., 90 (2012), pp. 1073–1088. · Zbl 1242.76268
[19] G. B. Jacobs and J. S. Hesthaven, High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, J. Comput. Phys., 214 (2006), pp. 96–121. · Zbl 1137.76461
[20] B. Lo, V. Minden, and P. Colella, A real-space Green’s function method for the mumerical solution of Maxwell’s equations, Comm. Appl. Math. Comput. Sci., 11 (2016), pp. 143–170. · Zbl 1365.65207
[21] M. Adams, P. Colella, D. T. Graves, J. N. Johnson, N. D. Keen, T. J. Ligocki, D. F. Martin, P. W. McCorquodale, D. Modiano, P. O. Schwartz, T. D. Sternberg, and B. Van Straalen, Chombo Software Package for AMR Applications—Design Document, Technical Report LBNL-6616E, Lawrence Berkeley National Laboratory, Berkeley, CA, 2015.
[22] F. Miniati and P. Colella, Block structured adaptive mesh and time refinement for hybrid, hyperbolic + N-body systems, J. Comput. Phys., 227 (2007), pp. 400–430. · Zbl 1128.85007
[23] J. J. Monaghan, Particle methods for hydrodynamics, Comput. Phys. Rep., 3 (1985), pp. 71–124.
[24] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. With Formulas, Graphs, and Mathematical Tables, 10th printing with corrections, U.S. Government Printing Office Washington, D.C., 1972. · Zbl 0543.33001
[25] A. Myers, P. Colella, and B. Van Straalen, The convergence of particle-in-cell schemes for cosmological dark matter simulations, Astrophys. J., 816 (2016), 56.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.