×

Equilibrium configurations of crystals. (English) Zbl 0673.73012

The aim of the paper is to determine equilibrium configurations of elastic crystals under displacement loding conditions by using direct methods. It is proved that for homogeneous deformation the minimum energy configuration is determined by the subenergy density of the energy density W. The results are extended for more general boundary conditions and also for some special homogeneous configurations admitting parametrized measure minima. Stable parametrized measure minimizers are introduced and also parametrized measures which minimize energy with respect to small compactly supported perturbations are studied for which the rank-one convexity of W is proved.
Reviewer: V.Tigoiu

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74E10 Anisotropy in solid mechanics
49S05 Variational principles of physics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Andrews, G., & Ball, J. 1982: Asymptotic behavior and change of phase in one dimensional nonlinear viscoelasticity. J. Diff. Eqns. 44, 306–341. · Zbl 0501.35011
[2] Ball, J. M. 1976: Constitutive equations and existence theorems in nonlinear elastostatics, Heriot-Watt Symp., I, (R. Knops, ed.) Pitman.
[3] Ball, J. M. 1980: Strict convexity, strong ellipticity, and regularity in the calculus of variations, Math. Proc. Camb. Phil. Soc. 87, 501–513. · Zbl 0451.35028
[4] Ball, J. M. 1984: Singular minimizers and their significance in elasticity, Phase Transformations and Material Instabilities in Solids, (Gurtin, M., ed.) Academic Press, 1–20.
[5] Ball, J. M.: to appear.
[6] Ball, J. M., & James, R. 1987: Fine phase mixtures as minimizers of energy, to appear Arch. Rational Mech. Anal., 100, 13–52. · Zbl 0629.49020
[7] Ball, J. M.,
[8] Barrett, C., & Massalski, T. B. 1980: Structure of metals, 3rd edition revised, Pergamon.
[9] Basinski, Z. S., & Christian, J. W. 1954: Experiments on the martensitic transformations in single crystals of indium-thallium alloys, Acta Met. 2, 149–166.
[10] Bensoussan, A., Lions, J.-L., & Papanicolaou, G. 1978: Asymptotic analysis for periodic structures (North Holland). · Zbl 0404.35001
[11] Burkart, M. W., & Read, T. A. 1953: Diffusionless phase change in the indiumthallium system, J. of Metals 5, 1516–1524.
[12] Chipot, M., & Evans, L. C. 1986: Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations, Proc. R. Soc. Edin., 102 A, 291–303. · Zbl 0602.49029
[13] Chipot, M., Kinderlehrer, D., & Vergara-Caffarelli, G. 1986: Smoothness of linear laminates, Arch. Rational Mech. and Anal. 96, 81–96. · Zbl 0617.73062
[14] Dacorogna, B. 1982: Weak continuity and weak lower semicontinuity of nonlinear functionals, Springer Lecture Notes in Math. 922. · Zbl 0484.46041
[15] Dacorogna, B., & Fusco, N. 1985: Semi-continuité des fonctionnelles avec contraintes du type ”det grad u>0”, Boll. U M I 6, 179–189. · Zbl 0564.49005
[16] Di Perna, R. 1977: Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. 63, 337–407.
[17] Eftis, J., MacDonald, D. E., & Arkilic, G. M. 1971: Theoretical calculation of the pressure variation of second-order elastic coefficients for alkali metals, Mater. Sci. Eng. 7, 141–150.
[18] Eftis, J., MacDonald, D. E., & Arkilic, G. M. 1971: Theoretical calculation of plane wave speeds for alkali metals under pressure, Mater. Sci. Eng. 8, 210–219.
[19] Ekeland, I., & Temam, R. 1976: Convex analysis and variational problems, (North-Holland). · Zbl 0322.90046
[20] Ericksen, J. L. 1973: Loading devices and stability of equilibrium, in Nonlinear Elasticity, Academic Press, 161–173.
[21] Ericksen, J. L. 1977: Special topics in elastostatics, Adv. in appl. mechanics, (C.-S. Yih, ed.) Academic Press 7, 189–243. · Zbl 0475.73017
[22] Ericksen, J. L. 1979: On the symmetry of deformable crystals, Arch. Rational Mech. Anal. 72, 1–13. · Zbl 0439.20031
[23] Ericksen, J. L. 1980: Some phase transitions in crystals. Arch. Rational Mech. Anal. 73, 99–124. · Zbl 0429.73007
[24] Ericksen, J. L. 1981: Some simpler cases of the Gibbs phenomenon for thermoelastic solids, J. of thermal stresses 4, 13–30.
[25] Ericksen, J. L. 1981: Changes in symmetry in elastic crystals, IUTAM Symp. Finite Elasticity (Carlson, D. E. and Shield, R. T., eds.) M. Nijhoff, 167–177.
[26] Ericksen, J. L. 1982: Crystal lattices and sublattices, Rend. Sem. Mat. Padova 68, 1–9. · Zbl 0523.73002
[27] Ericksen, J. L. 1983: Ill posed problems in thermoelasticity theory, Systems of Nonlinear Partial Differential Equations, (Ball, J., ed.) D. Reidel, 71–95.
[28] Ericksen, J. L. 1984: The Cauchy and Born hypotheses for crystals, Phase Transformations and Material Instabilities in Solids, (Gurtin, M., ed.) Academic Press 61–78.
[29] Ericksen, J. L. 1985: Some surface defects in unstressed solids, Arch. Rational Mech. Anal. 88, 337–345. · Zbl 0588.73188
[30] Ericksen, J. L. 1986: Stable equilibrium configurations of elastic crystals, Arch. Rational Mech. Anal. 94, 1–14. · Zbl 0597.73006
[31] Ericksen, J. L. 1987: Twinning of crystals I, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3, (Antman, S., Ericksen, J. L., Kinderlehrer, D., Müller, I., eds.) Springer, 77–96.
[32] Flory, P. J. 1961: Thermodynamic relations for high elastic polymers, Trans. Faraday Soc. 57, 829–838.
[33] Fonseca, I. 1987: Variational methods for elastic crystals (Thesis, Univ. of Minn.), Arch. Rational Mech. Anal. 97, 189–220. · Zbl 0611.73023
[34] Fonseca, I. 1987: Stability of elastic crystals. Non-classical continuum mechanics, (Knops, R. J. and Lacy, A., eds) LMS Lecture notes 122, 187–196.
[35] Fonseca, I.: The lower quasiconvex envelope of the stored energy function of an elastic crystal (to appear). · Zbl 0718.73075
[36] Fonseca, I., & Tartar, L.: The displacement problem for elastic crystals (to appear.) · Zbl 0691.73016
[37] Hardt, R., & Kinderlehrer, D. 1983: Elastic plastic deformation, Appl. Math. Optim. 10, 203–246. · Zbl 0522.73029
[38] James, R. D. 1982: Mechanics of coherent phase transformations in solids, MRL Report, Brown U., Division of Engineering.
[39] James, R. D. 1984: The arrangement of coherent phases in a loaded body, Phase Transformations and Material Instabilities in Solids, (Gurtin, M., ed.) Academic Press, 79–98.
[40] James, R. D. 1984: Stress free joints and polycrystals, Arch. Rational Mech. Anal. 86, 13–37. · Zbl 0558.73007
[41] James, R. D. 1986: Phase transformations and non-elliptic free energy, New Perspectives in Thermodynamics (Serrin, J., ed.) Springer, 223–239.
[42] James, R. D. 1986: Displacive phase transformations in solids, J. Mech. Phys. Solids 34, 359–394. · Zbl 0585.73198
[43] James, R. D. 1987: The stability and metastability of quartz, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3, (Antman, S., Ericksen, J. L., Kinderlehrer, D., Müller, I., eds.) Springer, 147–176.
[44] Jona, F., & Shirane, G. 1962: Ferroelectric crystals, Pergamon
[45] Kelvin & Tait 1879: Natural Philosophy, Cambridge.
[46] Kinderlehrer, D. 1987: Remarks about the equilibrium configurations of crystals, Proc. Symp. Material instabilities in continuum mechanics, Heriot-Watt (Ball, J. M. ed.) Oxford, 217–242. · Zbl 0850.73037
[47] Kinderlehrer, D. 1987: Twinning in crystals II, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3, (Antman, S., Ericksen, J. L., Kinderlehrer, D., Müller, L, eds.) Springer, 185–211.
[48] Knops, R. J., & Stuart, C. A. 1984: Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 86, 233–249. · Zbl 0589.73017
[49] Kohn, R., & Milton, G. 1986: On bounding the effective conductivity of anisotropic composites, Homogenization and effective moduli of materials and media, IMA Volumes in Appl. Math. 1 (Ericksen, J. L., Kinderlehrer, D., Kohn, R., & Lions, J.-L., eds) 97–125.
[50] Kohn, R. V., & Strang, G. 1987: Optimal design and relaxation of variational problems, I, CPAM 34, 113–137. · Zbl 0609.49008
[51] Kohn, R. V., & Strang, G. 1987: Optimal design and relaxation of variational problems, II, CPAM 34, 139–182. · Zbl 0621.49008
[52] Kohn, R. V., & Strang, G. 1987: Optimal design and relaxation of variational problems, III, CPAM 34, 353–377. · Zbl 0694.49004
[53] Lines, M. E., & Glass, A. M. 1977: Principles and applications of ferroelectrics and related materials, Oxford.
[54] Love, A. E. H. 1948: A treatise on the mathematical theory of elasticity, Dover.
[55] Marcellini, P. 1986: On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. H. Poincaré: Analyse non linéaire 3, 391–409. · Zbl 0609.49009
[56] Mascolo, E., & Schianchi, R. 1983: Existence theorems for non convex problems, J. Math. pures et appl. 62, 349–359. · Zbl 0522.49001
[57] Meyers, N. G. 1965: Quasiconvexity and lower semi-continuity of multiple variational integrals of any order, Trans. A.M.S. 119, 125–149. · Zbl 0166.38501
[58] Milton, G. 1986: Modelling the properties of composites by laminates, Homogenization and effective moduli of materials and media, IMA Volumes in Appl. Math. 1 (Ericksen, J. L., Kinderlehrer, D., Kohn, R., & Lions, J.-L., eds.) 150–175.
[59] Morrey, C. B., Jr. 1966: Multiple Integrals in the Calculus of Variations, Springer. · Zbl 0142.38701
[60] Moser, J. 1965: On the volume elements on a manifold, Trans. A.M.S. 120, 286–294. · Zbl 0141.19407
[61] Parry, G. 1981: On phase transitions involving internal strain, Int. J. Solids Structures 17, 361–378. · Zbl 0464.73004
[62] Pego, R. 1985: Phase transitions: stability and admissibility in one dimensional nonlinear viscoelasticity, IMA preprint 180.
[63] Pego, R. 1987: Phase transitions in one dimensional nonlinear viscoelasticity: admissibility and stability, Dynamical Problems in Continuum Physics, IMA Vol. Math. Appl. 4 (Bona, J., Dafermos, C., Ericksen, J. L., & Kinderlehrer, D., eds.) 277–288.
[64] Pipkin, A. C. 1986: The relaxed energy density for isotropic elastic membranes, IMA J. Appl. Math. 36, 85–99. · Zbl 0644.73047
[65] Pipkin, A. C. 1986: Some examples of crinkles, Homogenization and effective moduli of materials and media, IMA Volumes in Appl. Math. 1 (Ericksen, J. L., Kinderlehrer, D., Kohn, R., & Lions, J.-L., eds.) 182–195.
[66] Pippard, A. B. 1957: The elements of classical thermodynamics, Cambridge. · Zbl 0093.22103
[67] Pitteri, M. 1984: Reconciliation of local and global symmetries of crystals, J. Elasticity 14, 175–190. · Zbl 0543.73001
[68] Pitteri, M. 1985: On the kinematics of mechanical twinning in crystals, Arch. Rational Mech. Anal. 88, 25–57. · Zbl 0614.73004
[69] Pitteri, M. 1985: On v+1 lattices, J. Elasticity 15, 3–25. · Zbl 0568.73112
[70] Pitteri, M. 1986: On type-2 twins in crystals, Int. J. Plasticity 2, 99–106. · Zbl 0633.73002
[71] Pitteri, M. 1987: A contribution to the description of natural states for elastic crystalline solids, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3, (Antman, S., Ericksen, J. L., Kinderlehrer, D., Müller, I, eds.) Springer, 295–310.
[72] Simpson, H. C., & Spector, S. J. 1987: On the positivity of the second variation in finite elasticity, Arch. Rational Mech. Anal. 98, 1–30. · Zbl 0657.73027
[73] Slemrod, M. 1986: Interrelationships among mechanics, numerical analysis, compensated compactness, and oscillation theory, Oscillation Theory, Computation, and Methods of Compensated Compactness, IMA Vol. Math. Appl. 2, (Dafermos, C., Ericksen, J. L., Kinderlehrer, D., & Slemrod, M. eds.), 309–336. · Zbl 0603.65078
[74] Spencer, L. J. 1911: Crystallography, Encyc. Britannica, 11th edition, vol. XII, 569–591.
[75] Tartar, L. 1979: Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt symp. IV, (Knops, R. J. ed.) Pitman, 136–212.
[76] Temam, R. 1985: Mathematical problems in plasticity, Gauthier-Villars. · Zbl 0457.73017
[77] Tisza, L. 1951: On the general theory of phase transformations in solids (Smoluchowski, R., Mayer, J. E., & Weyl, W. A., eds.) Wiley, 1–35.
[78] Young, L. C. 1969: Lectures on calculus of variations and optimal control theory, W. B. Saunders. · Zbl 0177.37801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.