Sur la convergence des méthodes d’éléments finis nonconformes pour des problèmes linéaires de coques minces. (On the convergence of nonconforming finite element method for linear thin shell problems). (French) Zbl 0673.73060

In this paper, we study the convergence of nonconforming finite element method for the approximation of general thin shell problems. We give sufficient conditions for convergence for a large class of finite elements, then we estimate the error on the displacements and on the stresses.
Reviewer: P.Trouvé


74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI EuDML


[1] Adini, A., Clough, R.W.: Analysis of plate bending by the finite element method. NSF Report G7337, 1961
[2] Arantes e Oliveira, E.R., de: The patch test and the general convergence criteria of the finite element method. Int. J. Solids Struct.13, 159-178 (1977) · Zbl 0353.65063
[3] Arnold, D.N., Brezzi, F.: Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. Mod. Math. Anal. Numér.19, 7-32 (1985) · Zbl 0567.65078
[4] Babuska, I., Zlamal, M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal.10, 863-875 (1973) · Zbl 0266.65071
[5] Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput.31, 45-49 (1977) · Zbl 0364.65085
[6] Bazeley, G.P., Cheung, Y.K., Irons, B.M., Zienkiewicz, O.C.: Triangular element in bending ? conforming and nonconforming solutions. In: Proceeding of the Conference on Matrix Methods in Structural Mechanics, pp. 547-576. Ohio: Wright Patterson A.F.B. 1965
[7] Bernadou, M.: Convergence of conforming finite element methods for general shell problems. Int. J. Eng. Sci.18, 249-276 (1980) · Zbl 0429.73084
[8] Bernadou, M., Ciarlet, P.G.: Sur l’ellipticité du modèle linéaire de coques de W.T. Koiter. In: Computing methods in applied sciences and engineering. Lecture Notes in Economic and Mathematical Systems, Vol. 134, pp. 89-136. Berlin Heidelberg New York: Springer 1976
[9] Bernadou, M., Hassim, A.: Approximation de problèmes genéraux de coques dans un espace d’éléments finis d’Argyris-Ganev, Rapport de Recherche Inria (à paraître)
[10] Ciarlet, P.G.: Conforming finite element method for the shell problems. In: ?Whiteman, J.R. (ed.)? The mathematics of finite elements and applications II, pp. 105-123. London: Academic Press 1976
[11] Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland 1978 · Zbl 0383.65058
[12] Crouzeix, M., Raviart, P.A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO, Modelisation Math. Anal. Numer.R-3, 33-76 (1973) · Zbl 0302.65087
[13] Fortin, M.: A three-dimensional quadratic non-conforming element. Numer. Math.46, 269-279 (1985) · Zbl 0577.65008
[14] Fraeijs de Veubeke, B.: Displacement and equilibrium models in the finite element method. In: ?Zienkiewicz, O.C., Holister, G.S. (eds.)? Stress analysis, pp. 145-197. New York: Wiley 1965
[15] Fraeijs de Veubeke, B.: Variational principles and the Patch test. Int. J. Numer. Methods Eng.8, 783-801 (1974) · Zbl 0284.73043
[16] Ganev, M.G., Dimitrov, T.T.: Calculation of arch dam as a shell using IBM-370 computer and curved finite elements. In: ?Koiter, W.T., Mikhailov, G.K. (eds.)? Theory of shells, pp. 691-696. North-Holland 1980
[17] Griffiths, D.F., Mitchell, A.R.: Nonconforming elements. In: ?Griffiths, D.F. (ed.)? The mathematical basis of finite element methods with applications to partial differential equations, pp. 41-69. Oxford: Clarendon Press 1984
[18] Irons, B.M.: The semiloof shell element. In: ?Ashwell, D.G., Gallagher, R.H. (eds.)? Finite element for thin shells and curved members, pp. 197-222. London: Wiley 1976
[19] Irons, B.M., Loikkanen, M.: An engineers’ defense of the patch test. Int. J. Numer. Methods Eng.19, 1391-1401 (1983) · Zbl 0516.73080
[20] Irons, B.M., Razzaque, A.: Experience with the patch test for convergence of Finite elements. In: ?Aziz, A.K. (ed.)? The mathemtical foundations of the finite element method with applications to partial differential equations, pp. 557-587. New York: Academic Press 1972 · Zbl 0279.65087
[21] Kikuchi, F.: Convergence of the ACM finite element scheme for plate bending problems. Publ. Res. Inst. Math. Sci.11, 247-265 (1975) · Zbl 0326.73065
[22] Kikuchi, F.: Error analysis of flat plate element approximation of circular cylindrical shells. Theor. Appl. Mech.32, 469-484 (1984) · Zbl 0607.73084
[23] Koiter, W.T.: On the foundations of the linear theory of thin elastic shells. Proc. K. Ned. Akad. Wet., Ser. B #73, 169-195 (1970) · Zbl 0213.27002
[24] Lascaux, P., Lesaint, P.: Some nonconforming finite elements for the plate bending problems. RAIRO, Modelisation Math. Anal. Numer.R-I, 9-53 (1975) · Zbl 0319.73042
[25] Lesaint, P.: On the convergence of Wilson’s nonconforming element for solving the elastic problems. Comput. Methods Appl. Mech. Eng.7, 1-16 (1976) · Zbl 0345.65058
[26] Lesaint, P., Zlamal, M.: Convergence of the nonconforming Wilson element for arbitrary quadrilateral meshes. Numer. Math.36, 33-52 (1980) · Zbl 0471.65073
[27] Melosh, R.J.: A stiffness matrix for the analysis of thin plates in bending. J. Aero. Space Sci.28, 34-42 (1961) · Zbl 0100.20902
[28] Melosh, R.J.: Basis of derivation of matrices for the direct stiffness method. AIAA J.1, 1631-1637 (1963)
[29] Morley, L.S.D.: The triangular equilibrium element in the solution of plate bending problems. Aero. Q.19, 149-169 (1968)
[30] Miyoshi, T.: Convergence of finite element solutions represented by a nonconforming basis. Kumamoto J. Sci., Math.9, 11-20 (1972) · Zbl 0236.65071
[31] Nitsche, J.A.: Convergence of nonconforming methods. In: ?de Boor, C. (ed.)? Mathematical aspects of finite elements in partial differential equations, pp. 15-53. New York: Academic Press 1974
[32] Rannacher, R.: On nonconforming and mixed finite element methods for plate bending problems. The linear case. RAIRO, Modelisation Math. Anal. Numer.R13, 369-387 (1979) · Zbl 0425.35042
[33] Rannacher, R.: Nonconforming finite element for eigenvalue problems in linear plate theory. Numer. Math.32, 23-42 (1979) · Zbl 0394.65035
[34] Sander, G., Beckers, P.: The influence of the choice of connectors in the finite element method. In: ?Galligani, I., Magenes, E. (eds.)? Proc. Conf. mathematical aspects of the finite element methods. Rome 1975, Lecture Notes in Mathematics, Vol. 606, pp. 316-340. Berlin Heidelberg New York: Springer 1977
[35] Shi, Z.C.: An explicit analysis of Stummel’s patch test examples. Int. J. Numer. Methods Eng.20, 1233-1246 (1984) · Zbl 0557.65060
[36] Shi, Z.C.: On the convergence properties of the quadrilateral elements of Sander and Beckers. Math. Comput.42, 493-504 (1984) · Zbl 0557.65072
[37] Shi, Z.C.: A convergence condition for the quadrilateral Wilson element. Numer. Math.44, 349-361 (1984) · Zbl 0581.65008
[38] Shi, Z.C.: The generalized patch test for Zienkiewicz’s triangles. J. Comput. Math.2, 179-286 (1984) · Zbl 0564.73069
[39] Shi, Z.C.: Convergence of the TRUNC plate element. Comput. Meth. Appl. Mech. Eng.62, 71-88 (1987) · Zbl 0616.73069
[40] Strang, G.: Variational crimes in the finite element method. In: <Aziz, A.K. (ed.)> The mathematical foundations of the finite element method with applications to partial differential equations, pp. 689-710. New York: Academic Press 1972
[41] Strang, G., Fix, G.J.: An analysis of the finite element method. Englewood Cliffs: Prentice-Hall 1973 · Zbl 0356.65096
[42] Stummel, F.: The generalized patch test. SIAM J. Numer. Anal.16, 449-471 (1979) · Zbl 0418.65058
[43] Stummel, F.: The limitations of the patch test. Int. J. Numer. Methods Eng.15, 177-188 (1980) · Zbl 0445.65085
[44] Stummel, F.: Basic compactness properties of nonconforming and hybrid finite element spaces. RAIRO, Modelisation Math. Anal. Numer.R4, 81-115 (1980) · Zbl 0456.65061
[45] Taylor, R.L., Beresford, P.J., Wilson, E.L.: A nonconforming element for stress analysis. Int. J. Numer. Methods Eng.10, 1211-1219 (1976) · Zbl 0338.73041
[46] Thomas, J.M.: Sur l’analyse numérique des méthodes d’éléments finis hybrides et mixtes. Thèse, Université P. et M. Curie, Paris 1977
[47] Trouvé, P.: Approximations nonconformes de problèmes généraux de coques minces par éléments finis du type “Morley{”, Rapport de Recherche Inria No 766, 1987}
[48] Wempner, E.: Mechanics of solids with applications to thin bodies. Sigthoof & Woordhoff 1981 · Zbl 0498.73006
[49] Wilson, E.L., Taylor, R.L., Doherty, W.P., Ghaboussi, J.: Incompatible displacement models. In: <Fenves, S.J. (ed.)> numerical and computer methods in structural mechanics, pp. 43-57. New York: Academic Press 1973
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.