# zbMATH — the first resource for mathematics

Automorphism-invariant non-singular rings and modules. (English) Zbl 1411.16002
Summary: A ring $$A$$ is a right automorphism-invariant right non-singular ring if and only if $$A = S \times T$$, where $$S$$ a right self-injective regular ring and $$T$$ is a strongly regular ring which contains all invertible elements of its maximal right ring of quotients. Over a ring $$A$$, each direct sum of automorphism-invariant non-singular right modules is an automorphism-invariant module if and only if the factor ring of the ring $$A$$ with respect to its right Goldie radical is a semiprime right Goldie ring.

##### MSC:
 16D50 Injective modules, self-injective associative rings 16P60 Chain conditions on annihilators and summands: Goldie-type conditions
Full Text:
##### References:
 [1] Alahmadi, A.; Er, N.; Jain, S. K., Modules which are invariant under monomorphisms of their injective hulls, J. Aust. Math. Soc., 79, 3, 2265-2271, (2005) · Zbl 1104.16003 [2] Dickson, S. E.; Fuller, K. R., Algebras for which every indecomposable right module is invariant in its injective envelope, Pacific J. Math., 31, 3, 655-658, (1969) · Zbl 0185.09301 [3] Er, N.; Singh, S.; Srivastava, A. K., Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra, 379, 223-229, (2013) · Zbl 1287.16007 [4] Goodearl, K. R., Ring theory. non-singular rings and modules, (1976), Marcel Dekker New York [5] Guil Asensio, P. A.; Srivastava, A. K., Automorphism-invariant modules satisfy the exchange property, J. Algebra, 388, 101-106, (2013) · Zbl 1296.16002 [6] Handelman, D., Strongly semiprime rings, Pacific J. Math., 211, 209-223, (1975) · Zbl 0345.16004 [7] Handelman, D.; Lawrence, J., Strongly prime rings, Trans. Amer. Math. Soc., 211, 209-223, (1975) · Zbl 0345.16004 [8] Jain, S. K.; Singh, S., Quasi-injective and pseudo-injective modules, Canad. Math. Bull., 18, 3, 359-366, (1975) · Zbl 0326.16023 [9] Kutami, M.; Oshiro, K., Strongly semiprime rings and non-singular quasi-injective modules, Osaka J. Math., 17, 41-50, (1980) · Zbl 0425.16005 [10] Lam, T., Lectures on modules and rings, (1999), Springer New York · Zbl 0911.16001 [11] Lee, T.-K.; Zhou, Y., Modules which are invariant under automorphisms of their injective hulls, J. Algebra Appl., 12, 2, (2013) · Zbl 1263.16005 [12] Rowen, L. H., Ring theory, vol. I, (1988), Academic Press Boston [13] Singh, S.; Srivastava, A. K., Rings of invariant module type and automorphism-invariant modules, (Ring Theory and Its Applications, Contemp. Math., vol. 609, (2014), Amer. Math. Soc. Providence, RI), 299-311 · Zbl 1296.16006 [14] StenstrĂ¶m, B., Rings of quotients, (1975), Springer Berlin-New York [15] Teply, M. L., Pseudo-injective modules which are not quasi-injective, Proc. Amer. Math. Soc., 49, 2, 305-310, (1975) · Zbl 0303.16013 [16] Tuganbaev, A. A., Characteristic submodules of injective modules, Discrete Math. Appl., 25, 2, 203-209, (2013) · Zbl 1293.16003 [17] Tuganbaev, A. A., Automorphism-invariant modules, J. Math. Sci., 206, 6, 694-698, (2015) · Zbl 1331.16002 [18] Tuganbaev, A. A., Characteristic submodules of injective modules over strongly prime rings, Discrete Math. Appl., 24, 4, 253-256, (2014) · Zbl 1343.16002 [19] Tuganbaev, A. A., Automorphism-extendable modules, Discrete Math. Appl., 25, 5, 305-309, (2015) · Zbl 1348.16003 [20] Tuganbaev, A. A., Automorphism-invariant semi-Artinian modules, J. Algebra Appl., 16, 1, (2017) · Zbl 1394.16024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.