×

zbMATH — the first resource for mathematics

Analysis of a splitting approach for the parallel solution of linear systems on GPU cards. (English) Zbl 1366.65050

MSC:
65F10 Iterative numerical methods for linear systems
65F08 Preconditioners for iterative methods
65F50 Computational methods for sparse matrices
65Y05 Parallel numerical computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[3] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg., 184 (2000), pp. 501–520. · Zbl 0956.65017
[4] N. Bell and M. Garland, Cusp: Generic parallel algorithms for sparse matrix and graph computations, Version 0.3.0, , (2012).
[5] N. Bell and J. Hoberock, Thrust: A productivity-oriented library for CUDA, GPU Comput. Gems Jade Edition, 2 (2011), pp. 359–371.
[6] E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proceedings of the 24th ACM Conference, New York, 1969, pp. 157–172.
[7] J. W. Demmel, SuperLU Users’ Guide, Lawrence Berkeley National Laboratory, Berkeley, CA, 2011.
[8] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), pp. 201–213. · Zbl 1049.90004
[9] I. Duff and J. Koster, The design and use of algorithms for permuting large entries to the diagonal of sparse matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 889–901. · Zbl 0947.65048
[10] I. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a sparse matrix, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 973–996. · Zbl 0979.05087
[11] G. H. Golub and C. F. V. Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD, 1980. · Zbl 1268.65037
[12] M. Hopper, Harwell Subroutine Library. A Catalogue of Subroutines, Tech. report, DTIC, Ft, Belvoir, VA, 1973.
[13] A. Li, O. Deshmukh, R. Serban, and D. Negrut, A Comparison of the Performance of SaP::GPU and Intel’s Math Kernel Library for Solving Dense Banded Linear Systems, Tech. Report TR-2012-07, SBEL, University of Wisconsin–Madison, 2014, .
[14] A. Li, H. Mazhar, R. Serban, and D. Negrut, Comparison of SPMV Performance on Matrices with Different Matrix Format Using CUSP, cuSPARSE and ViennaCL, Tech. Report TR-2015-02, SBEL, University of Wisconsin–Madison, 2015, .
[15] A. Li, R. Serban, and D. Negrut, A Hybrid GPU-CPU Parallel CM Reordering Algorithm for Bandwidth Reduction of Large Sparse Matrices, Tech. Report TR-2014-12, SBEL, University of Wisconsin–Madison, 2014, .
[16] A. Li, R. Serban, and D. Negrut, An Implementation of a Reordering Approach for Increasing the Product of Diagonal Entries in a Sparse Matrix, Tech. Report TR-2014-01, SBEL, University of Wisconsin–Madison, 2014, .
[17] A. Li, R. Serban, and D. Negrut, Analysis of A Splitting Approach for the Parallel Solution of Linear Systems on GPU Cards, Tech. Report TR-2015-12, SBEL, University of Wisconsin–Madison, 2015, . · Zbl 1366.65050
[18] D. Lukarski and N. Trost, Paralution Project, .
[19] M. Manguoglu, A. Sameh, and O. Schenk, PSPIKE: A parallel hybrid sparse linear system solver, in Proceedings of the 15th International Euro-Par Conference on Parallel Processing, Delft, The Netherlands, Springer-Verlag, Berlin, 2009, pp. 797–808.
[20] D. Melanz, L. Fang, J. Jayakumar, and D. Negrut, A comparison of numerical methods for solving multibody dynamics problems with frictional contact modeled via differential variational inequalities, Comput. Methods Appl. Mech. Engrg., 320 (2017), pp. 668–693.
[21] C. Mikkelsen and M. Manguoglu, Analysis of the truncated SPIKE algorithm, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1500–1519. · Zbl 1176.65028
[22] NVIDIA, CUDA Programming Guide, (2015).
[23] NVIDIA, cuSOLVER, (2015).
[24] E. Polizzi and A. Sameh, A parallel hybrid banded system solver: The SPIKE algorithm, Parallel Comput., 32 (2006), pp. 177–194.
[25] E. Polizzi and A. Sameh, SPIKE: A parallel environment for solving banded linear systems, Comput. & Fluids, 36 (2007), pp. 113–120. · Zbl 1181.76110
[27] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003. · Zbl 1031.65046
[28] A. Sameh and D. Kuck, On stable parallel linear system solvers, J. ACM, 25 (1978), pp. 81–91. · Zbl 0364.68051
[32] O. Schenk and K. Gärtner, Solving unsymmetric sparse systems of linear equations with Pardiso, Future Generation Comput. Syst., 20 (2004), pp. 475–487.
[33] R. Serban, D. Melanz, A. Li, I. Stanciulescu, P. Jayakumar, and D. Negrut, A GPU-based preconditioned Newton-Krylov solver for flexible multibody dynamics, Internat. J. Numer. Methods Engrg., 102 (2015), pp. 1585–1604, . · Zbl 1352.65369
[34] G. Sleijpen and D. Fokkema, BiCGStab(l) for linear equations involving unsymmetric matrices with complex spectrum, Electron. Trans. Number. Anal., 1 (1993), pp. 11–32. · Zbl 0820.65016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.