zbMATH — the first resource for mathematics

The optimization test environment. (English) Zbl 1364.90006
Summary: The Optimization Test Environment is an interface to efficiently test different optimization solvers. It is designed as a tool for both developers of solver software and practitioners who just look for the best solver for their specific problem class. It enables users to: =0.5 cm
Choose and compare diverse solver routines;
Organize and solve large test problem sets;
Select interactively subsets of test problem sets;
Perform a statistical analysis of the results, automatically produced as LaTeX, PDF, and JPG output.
The Optimization Test Environment is free to use for research purposes.

90-04 Software, source code, etc. for problems pertaining to operations research and mathematical programming
90C30 Nonlinear programming
Full Text: DOI
[1] Ali, M; Khompatraporn, C; Zabinsky, Z, A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems, J Glob Optim, 31, 635-672, (2005) · Zbl 1093.90028
[2] Audet C, Dang C, Orban D (2010) Algorithmic parameter optimization of the DFO method with the OPAL framework. In: Software automatic tuning, from concepts to state-of-the-art results. Springer (in press). doi:10.1007/978-1-4419-6935-4 · Zbl 1180.90252
[3] Brooke A, Kendrick D, Meeraus A (1988) GAMS: a user’s guide. Scientific Press, New York
[4] Byrd, R; Nocedal, J; Waltz, R, KNITRO: an integrated package for nonlinear optimization, 35-59, (2006), Berlin · Zbl 1108.90004
[5] Cox, S; Haftka, R; Baker, C; Grossman, B; Mason, W; Watson, L, A comparison of global optimization methods for the design of a high-speed civil transport, J Glob Optim, 21, 415-432, (2001) · Zbl 1014.90072
[6] Dolan, E; Moré, J, Benchmarking optimization software with performance profiles, Math Program, 91, 201-213, (2002) · Zbl 1049.90004
[7] Dolan E, Moré J, Munson T (2004) Benchmarking optimization software with COPS 3.0. Technical report ANL/MCS-273, Mathematics and Computer Science Division, Argonne National Laboratory
[8] Dolan, E; Moré, J; Munson, T, Optimality measures for performance profiles, SIAM J Optim, 16, 891-909, (2006) · Zbl 1113.90146
[9] Domes, F, Gloptlab—a configurable framework for the rigorous global solution of quadratic constraint satisfaction problems, Optim Methods Softw, 24, 727-747, (2009) · Zbl 1180.90217
[10] Domes F (2013) Test environment. Web document, http://www.mat.univie.ac.at/ dferi/testenv.html · Zbl 1068.90526
[11] Domes F, Fuchs M, Schichl H (2013) The optimization test environment. Web document, http://www.mat.univie.ac.at/ dferi/testenv_download.html · Zbl 1364.90006
[12] Drud, A, CONOPT: a GRG code for large sparse dynamic nonlinear optimization problems, Math Program, 31, 153-191, (1985) · Zbl 0557.90088
[13] Drud, A, CONOPT—a large-scale GRG code, ORSA J Comput, 6, 207-216, (1994) · Zbl 0806.90113
[14] Ferris, M; Munson, T, Interfaces to PATH 3.0: design, implementation and usage, Comput Optim Appl, 12, 207-227, (1999) · Zbl 1040.90549
[15] Fourer R, Gay D, Kernighan B (2002) AMPL: a modeling language for mathematical programming. Duxbury/Brooks/Cole, New York
[16] Fowler, K; Reese, J; Kees, C; Dennis, J; Kelley, C; Miller, C; Audet, C; Booker, A; Couture, G; Darwin, R; Farthing, M; Finkel, D; Gablonsky, J; Gray, G; Kolda, T, Comparison of derivative-free optimization methods for groundwater supply and hydraulic capture community problems, Adv Water Resour, 31, 743-757, (2008)
[17] Gamsworld (2009) Performance tools. Web document, http://gamsworld.org/performance/tools.htm · Zbl 1187.90319
[18] Gilbert J, Jonsson X (2009) LIBOPT—an environment for testing solvers on heterogeneous collections of problems—the manual, version 2.1. Technical report RT-331 revised, INRIA · Zbl 1049.90004
[19] Gould, N; Orban, D; Toint, P, Cuter and sifdec: a constrained and unconstrained testing environment, revisited, ACM Trans Math Softw, 29, 373-394, (2003) · Zbl 1068.90526
[20] Johnson, D, A theoretician’s guide to the experimental analysis of algorithms, Bull Am Math Soc, 220, 215-250, (2002) · Zbl 1103.68997
[21] Kallrath J (2004) Modeling languages in mathematical optimization. Kluwer Academic, Dordrecht · Zbl 1049.90002
[22] Lougee-Heimer, R, The common optimization interface for operations research, IBM J Res Dev, 47, 57-66, (2003)
[23] Mittelmann H (2009) Benchmarks. Web document, http://plato.asu.edu/sub/benchm.html · Zbl 0806.90113
[24] Moles, C; Mendes, P; Banga, J, Parameter estimation in biochemical pathways: a comparison of global optimization methods, Genome Res, 13, 2467-2474, (2003)
[25] Mongeau, M; Karsenty, H; Rouze, V; Hiriart-Urruty, J, Comparison of public-domain software for black box global optimization, Optim Methods Softw, 13, 203-226, (2000) · Zbl 0963.90062
[26] Moré, J; Wild, S, Benchmarking derivative-free optimization algorithms, SIAM J Optim, 20, 172-191, (2009) · Zbl 1187.90319
[27] Murtagh B, Saunders M (1983) MINOS 5.5 user’s guide. Technical report SOL 83-20R, Systems Optimization Laboratory, Department of Operations Research, Stanford University, Stanford, CA. Available on-line at: http://www.sbsi-sol-optimize.com/manuals/Minos · Zbl 1113.90146
[28] NEOS (2013) NEOS server for optimization. http://www.neos-server.org/neos/ · Zbl 1103.68997
[29] Neumaier, A; Shcherbina, O; Huyer, W; Vinko, T, A comparison of complete global optimization solvers, Math Program, 103, 335-356, (2005) · Zbl 1099.90001
[30] Sahinidis N, Tawarmalani M (2005) BARON 7.2.5: global optimization of mixed-integer nonlinear programs. User’s manual. Available on-line at: http://www.gams.com/dd/docs/solvers/baron.pdf
[31] Schichl H et al. (2000-2013) The COCONUT environment. Software
[32] Schrage L (2008) Optimization modeling with LINGO. LINDO systems
[33] Shcherbina O (2013) COCONUT benchmark. Web document, http://www.mat.univie.ac.at/ neum/glopt/coconut/Benchmark/Benchmark.html
[34] Shcherbina, O; Neumaier, A; Sam-Haroud, D; Vu, X; Nguyen, T, Benchmarking global optimization and constraint satisfaction codes, 211-222, (2003), Berlin · Zbl 1296.90004
[35] Tawarmalani, M; Sahinidis, N, Global optimization of mixed-integer nonlinear programs: a theoretical and computational study, Math Program, 99, 563-591, (2004) · Zbl 1062.90041
[36] Vaz, A; Vicente, L, A particle swarm pattern search method for bound constrained global optimization, J Glob Optim, 39, 197-219, (2007) · Zbl 1180.90252
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.