×

zbMATH — the first resource for mathematics

Thermodynamically consistent modeling of granular-fluid mixtures incorporating pore pressure evolution and hypoplastic behavior. (English) Zbl 1365.76327
Summary: This paper presents a new, thermodynamically consistent model for granular-fluid mixtures, derived with the entropy principle of Müller and Liu. Including a pressure diffusion equation combined with the concept of extra pore pressure, and hypoplastic material behavior, thermodynamic restrictions are imposed on the constitutive quantities. The model is applied to a granular-fluid flow, using a closing assumption in conjunction with the fluid pressure. While the focal point of the work is the conceptional part, i.e. the thermodynamic consistent modeling, numerical simulations with physically reasonable results for simple shear flow are also carried out.

MSC:
76T25 Granular flows
76S05 Flows in porous media; filtration; seepage
Software:
D-Claw
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ahmadi, G, A generalized continuum theory for granular materials, Int. J. Non-Linear Mech., 17, 21-33, (1982) · Zbl 0488.73001
[2] Albers, B.: Linear wave propagation in unsaturated rocks and soils. In: Continuous Media with Microstructure, pp. 205-220. Springer, (2010) · Zbl 0098.21002
[3] Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 225, pp. 49-63. The Royal Society (1954) · Zbl 0958.76090
[4] Bauer, E, Calibration of a comprehensive hypoplastic model for granular materials, Soilds Found., 36, 13-26, (1996)
[5] Bauer, G.: Thermodynamische Betrachtung einer gesättigten Mischung. Ph.D. thesis, Technische Universität Darmstadt (1997)
[6] Bluhm, J; Boer, R; Wilmanski, K, The thermodynamic structure of the two-component model of porous incompressible materials with true mass densities, Mech. Res. Commun., 22, 171-180, (1995) · Zbl 0868.73012
[7] Boer, R; Ehlers, W, The development of the concept of effective stresses, Acta Mech., 83, 77-92, (1990) · Zbl 0724.73195
[8] Bouchut, F., Fernández-Nieto, E.D., Mangeney, A., Narbona-Reina, G.: A two-phase two-layer model for fluidized granular flows with dilatancy effects (2015) · Zbl 1445.76087
[9] Campbell, C; Brennen, C, Chute flows of granular material: some computer simulations, J. Appl. Mech., 52, 172-178, (1985)
[10] Coleman, BD; Noll, W, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 167-178, (1963) · Zbl 0113.17802
[11] Fang, C, Modeling dry granular mass flows as elasto-visco-hypoplastic continua with microstructural effects. I. thermodynamically consistent constitutive model, Acta Mech., 197, 173-189, (2008) · Zbl 1151.74329
[12] Fang, C, A k-\(ϵ \) turbulence closure model of an isothermal dry granular dense matter, Contin. Mech. Thermodyn., 28, 1049-1069, (2016) · Zbl 1355.76030
[13] Fang, C, Rapid dry granular flows down an incline: a constitutive theory with an independent kinematic internal length, Meccanica, 51, 1387-1403, (2016) · Zbl 1341.76034
[14] Fang, C; Wang, Y; Hutter, K, Shearing flows of a dry granular material-hypoplastic constitutive theory and numerical simulations, Int. J. Numer. Anal. Methods Geomech., 30, 1409-1437, (2006) · Zbl 1196.74027
[15] George, DL; Iverson, RM, A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure, Ital. J. Eng. Geol. Environ., 10, 2011-2013, (2011)
[16] Goodman, M; Cowin, S, A continuum theory for granular materials, Arch. Ration. Mech. Anal., 44, 249-266, (1972) · Zbl 0243.76005
[17] Gray, JMNT; Tai, YC; Herrmann, HJ (ed.); Hovi, JP (ed.); Luding, S (ed.), Particle size segregation, granular shocks and stratification patterns, 697-702, (1998), Netherlands
[18] Hanes, DM; Inman, DL, Observations of rapidly flowing granular-fluid materials, J. Fluid Mech., 150, 357-380, (1985)
[19] Hess, J.: Konstitutive Modellierung von Granulat-Fluid-Mischungen durch Auswertung des Entropieprinzips. Master’s thesis, Technische Universität Darmstadt (2014) · Zbl 0398.76008
[20] Hutter, K, The foundations of thermodynamics, its basic postulates and implications. a review of modern thermodynamics, Acta Mech., 27, 1-54, (1977)
[21] Hutter, K., Jöhnk, K.: Continuum Methods of Physical Modeling. Springer, Berlin (2004) · Zbl 1058.76001
[22] Hutter, K; Jöhnk, K; Svendsen, B, On interfacial transition conditions in two phase gravity flow, Zeitschrift für Angewandte Mathematik und Physik, 45, 746-762, (1994) · Zbl 0820.76086
[23] Hutter, K; Schneider, L, Important aspects in the formulation of solid-fluid debris-flow models. part I. thermodynamic implications, Contin. Mech. Thermodyn., 22, 363-390, (2010) · Zbl 1234.74019
[24] Hutter, K; Schneider, L, Important aspects in the formulation of solid-fluid debris-flow models. part II. constitutive modelling, Contin. Mech. Thermodyn., 22, 391-411, (2010) · Zbl 1234.74020
[25] Iverson, RM, The physics of debris flow, Rev. Geophys., 35, 245-296, (1997)
[26] Iverson, RM; Denlinger, RP, Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory, J. Geophys. Res., 106, 537-552, (2001)
[27] Iverson, R.M., George, D.L.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 470. The Royal Society (2014) · Zbl 1371.86008
[28] Kirchner, N.P.: Thermodynamically consistent modelling of abrasive granular materials. I. Non-equilibrium theory. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 458, pp. 2153-2176. The Royal Society (2002) · Zbl 1019.74008
[29] Kirchner, N.P., Teufel, A.: Thermodynamically consistent modelling of abrasive granular materials. II. Thermodynamic equilibrium and applications to steady shear flows. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 458, pp. 3053-3077. The Royal Society (2002) · Zbl 1116.74338
[30] Kolymbas, D, A rate-dependent constitutive equation for soils, Mech. Res. Commun., 4, 367-372, (1977)
[31] Kolymbas, D, An outline of hypoplasticity, Arch. Appl. Mech., 61, 143-151, (1991) · Zbl 0734.73023
[32] Kowalski, J; McElwaine, JN, Shallow two-component gravity-driven flows with vertical variation, J. Fluid Mech., 714, 434-462, (2013) · Zbl 1284.76393
[33] Lee, C.H., Huang, C.J.: Model of sheared granular material and application to surface-driven granular flows under gravity. Phys. Fluids 22(4), 043,307-1-10 (2010) · Zbl 1190.76069
[34] Liu, IS, Method of Lagrange multipliers for exploitation of the entropy principle, Arch. Ration. Mech. Anal., 46, 131-148, (1972) · Zbl 0252.76003
[35] Liu, IS, On chemical potencial and imcompressible porous media, J. de Mécanique, 19, 327-342, (1980)
[36] Liu, IS; Albers, B (ed.), On pore fluid pressure and effective solid stress in the mixture theory of porous media, 19-28, (2010), Berlin
[37] Liu, IS, A solid-fluid mixture theory of porous media, Int. J. Eng. Sci., 84, 133-146, (2014) · Zbl 1423.76430
[38] Major, JJ; Pierson, TC, Debris flow rheology: experimental analysis of fine-grained slurries, Water Resour. Res., 28, 841-857, (1992)
[39] Müller, I, A thermodynamic theory of mixtures of fluids, Arch. Ration. Mech. Anal., 28, 1-39, (1968) · Zbl 0157.56703
[40] Müller, I, The coldness, a universal function in thermoelastic bodies, Arch. Ration. Mech. Anal., 41, 319-332, (1971) · Zbl 0225.73003
[41] Müller, I, Die kältefunktion, eine universelle funktion in der thermodynamik viskoser wärmeleitender flüssigkeiten, Arch. Ration. Mech. Anal., 40, 1-36, (1971) · Zbl 0229.73003
[42] Müller, I., Liu, I.S.: Thermodynamics of mixtures of fluids. In:C. Truesdell (ed.) Rational Thermodynamics. Springer (1984)
[43] Papenfuss, C; Forest, S, Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom, J. Non-Equilib. Thermodyn., 31, 319-353, (2006) · Zbl 1119.80001
[44] Passman, S, Mixtures of granular materials, Int. J. Eng. Sci., 15, 117-129, (1977) · Zbl 0352.73006
[45] Passman, SL; Nunziato, JW; Bailey, PB; Reed, KW, Shearing motion of a fluid saturated granular material, J. Rheol., 30, 167-192, (1986) · Zbl 0622.76112
[46] Passman, SL; Nunziato, JW; Walsh, EK; Truesdell, C (ed.), A theory of multiphase mixtures, (1984), Berlin
[47] Pitman, EB; Le, L, A two-fluid model for avalanche and debris flows, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 363, 1573-1601, (2005) · Zbl 1152.86302
[48] Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res. 117 (2012)
[49] Pudasaini, SP; Hutter, K, Rapid shear flows of dry granular masses down curved and twisted channels, J. Fluid Mech., 495, 193-208, (2003) · Zbl 1054.76083
[50] Richardson, J; Zaki, W, The sedimentation of a suspension of uniform spheres under conditions of viscous flow, Chem. Eng. Sci., 3, 65-73, (1954)
[51] Scotto di Santolo, A; Pellegrino, A; Evangelista, A, Experimental study on the rheological behaviour of debris flow, Nat. Hazards Earth Syst. Sci., 10, 2507-2514, (2010)
[52] Savage, S., Iverson, R.M.: Surge dynamics coupled to pore-pressure evolution in debris flows, pp. 503-514. Millpress, (2003) · Zbl 0724.73195
[53] Savage, S; Sayed, M, Stresses developed by dry cohesionless granular materials sheared in an annular shear cell, J. Fluid Mech., 142, 391-430, (1984)
[54] Savage, SB, Gravity flow of cohesionless granular materials in chutes and channels, J. Fluid Mech., 92, 53-96, (1979) · Zbl 0398.76008
[55] Savage, SB, The mechanics of rapid granular flows, Adv. Appl. Mech., 24, 289-366, (1984) · Zbl 0598.76104
[56] Savage, SB; Hutter, K, The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177-215, (1989) · Zbl 0659.76044
[57] Savage, SB; Hutter, K, The dynamics of avalanches of granular materials from initiation to runout, Part I Anal. Acta Mech., 86, 201-223, (1991) · Zbl 0732.73053
[58] Schneider, L., Hutter, K.: Solid-Fluid Mixtures of Frictional Materials in Geophysical and Geotechnical Context. Advances in Geophysical and Environmental Mechanics and Mathematics. Springer, Berlin (2009)
[59] Svendsen, B, On the thermodynamics of thermoelastic materials with additional scalar degrees of freedom, Contin. Mech. Thermodyn., 11, 247-262, (1999) · Zbl 0944.74005
[60] Svendsen, B; Hutter, K, On the thermodynamics of a mixture of isotropic materials with constraints, Int. J. Eng. Sci., 33, 2021-2054, (1995) · Zbl 0899.73028
[61] Svendsen, B; Hutter, K; Laloui, L, Constitutive models for granular materials including quasi-static frictional behaviour: toward a thermodynamic theory of plasticity, Contin. Mech. Thermodyn., 11, 263-275, (1999) · Zbl 0962.74014
[62] Takahashi, T.: Debris Flow. A.A. Balkema, The Netherlands (1991)
[63] Teufel, A.: Simple flow configurations in hypoplastic abrasive materials. Master’s thesis, Technische Universität Darmstadt (2001)
[64] Truesdell, C, Sulle basi Della termomeccanica, Rend. Lincei, 22, 33-38, (1957) · Zbl 0098.21002
[65] Truesdell, C, Mechanical basis of diffusion, J. Chem. Phys., 37, 2336-2344, (1962) · Zbl 1167.68031
[66] Truesdell, C; Truesdell, C (ed.), Thermodynamics of diffusion, (1984), Berlin · Zbl 0583.73002
[67] Wang, Y; Hutter, K, Comparison of two entropy principles and their applications in granular flows with / without fluid, Arch. Mech., 51, 605-632, (1999) · Zbl 0958.76090
[68] Wang, Y; Hutter, K, A constitutive theory of fluid-saturated granular materials and its application in gravitational flows, Rheol. Acta, 38, 214-223, (1999)
[69] Wang, Y; Hutter, K, A constitutive theory of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures, Granul. Matter., 1, 163-181, (1999)
[70] Wang, Y; Hutter, K, Shearing flows in a goodman-cowin type material—theory and numerical results, Part. Sci. Technol., 17, 97-124, (1999)
[71] Wang, Y., Hutter, K.: Granular material theories revisited. In: Geomorphological Fluid Mechanics, pp. 79-107. Springer, (2001) · Zbl 1169.76434
[72] Wilmanski, K, Porous media at finite strains. the new model with the balance equation for porosity, Arch. Mech., 48, 591-628, (1996) · Zbl 0864.73007
[73] Wu, W; Bauer, E; Kolymbas, D, Hypoplastic constitutive model with critical state for granular materials, Mech. Mater., 23, 45-69, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.