zbMATH — the first resource for mathematics

Anisotropic cosmological models in \(f(R,T)\) gravity with variable deceleration parameter. (English) Zbl 1365.83039

83F05 Relativistic cosmology
83C15 Exact solutions to problems in general relativity and gravitational theory
Full Text: DOI
[1] Ade, P. A. R., Planck 2015 results. XIII. cosmological parameters, Astron. Astrophys., 594, A13, (2016)
[2] BOSS Collab. (S. Allam et al.), The clustering of galaxies in the completed SDSS-III Baryon oscillation spectroscopic survey: Cosmological analysis of the DR12 galaxy sample, arXiv:1607.03155.
[3] Naess, S., The atacama cosmology telescope: CMB polarization at \(2 0 0 < l < 9 0 0 0\), J. Cosmol. Astropart. Phys., 1410, 10, (2014)
[4] Garnavich, P. M., Constraints on cosmological models from hubble space telescope observations of high-z supernovae, Astrophys. J., 493, L53, (1998)
[5] Riess, A. G., Observational evidence from supernovae for an accelerating universe and cosmological constant, Astron. J., 116, 1009, (1998)
[6] Perlmutter, S., Measurements of omega and lambda from 42 high-redshift supernovae, Astrophys. J., 517, 565, (1999) · Zbl 1368.85002
[7] Garnavich, P. M., Supernovae limits on the cosmic equation of state, Astrophys. J., 509, 74-79, (1998)
[8] Perlmutter, S., Measurements of the cosmological parameters omega and lambda from the first 7 supernovae at \(z > = 0 . 3 5\), Astrophys. J., 483, 565, (1997)
[9] Letelier, P. S., String cosmologies, Phys. Rev. D, 28, 2414, (1983)
[10] Spergel, D. N., First year wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Suppl., 148, 175-194, (2003)
[11] Spergel, D. N., Wilkinson microwave anisotropy probe (WMAP) three years results: implications for cosmology, Astrophys. J. Suppl., 170, 377, (2007)
[12] Tegmark, M., Cosmological parameters from SDSS and WMAP, Phys. Rev. D, 69, 103501, (2004)
[13] Daniel, S. F., Large scale structure as a probe of gravitational slip, Phys. Rev. D, 77, 103513, (2008)
[14] Caldwell, R. R.; Doran, M., Bianchi type-IX magnetized dark energy model in saez-ballestar theory of gravitation, Phys. Rev. D, 69, 103517, (2004)
[15] Huang, Z. Y., Holographic explanation of wide-angle power correlation suppression in the cosmic microwave background radiation, J. Cosmol. Astropart. Phys., 5, 013, (2006)
[16] Caldwell, R. R., Sudden gravitational transition, Phys. Rev. D, 73, 023513, (2006)
[17] Nielsen, J. T.; Guffanti, A.; Sarkar, S., Marginal evidence for cosmic acceleration from type ia supernovae, Sci. Rep., 6, 35596, (2016)
[18] Shariff, H.; Jiao, X.; Trotta, R.; van Dyk, D. A., BAHAMAS: new snia analysis reveals inconsistencies with standard cosmology, Astrophys. J., 827, 1, (2016)
[19] Plank Collab. (P. A. R. Ade et al.), Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076.
[20] Capozziello, S., Curvature quintessence, Internat. J. Modern Phys. D, 11, 483-492, (2002) · Zbl 1062.83565
[21] Caroll, S. M.; Duvvuri, V.; Trodden, M.; Turner, M. S., Is cosmic speed-up due to new gravitational physics?, Phys. Rev. D, 70, 043528, (2004)
[22] Dolgov, A. D.; Kawasaki, M., Can modified gravity explain accelerated cosmic expansion?, Phys. Lett. B, 573, 1, (2003) · Zbl 1037.83028
[23] Nojiri, S.; Odintsov, S. D., Modified gravity with negative and positive powers of curvature: unification of inflation and cosmic acceleration, Phys. Rev. D, 68, 123512, (2003)
[24] Nojiri, S.; Odintsov, S. D., The minimal curvature of the universe in modified gravity and conformed anomaly resolution of the instabilities, Phys. Lett. A, 19, 627-638, (2004) · Zbl 1080.83566
[25] Abdalaa, M. C. B.; Nojiri, S.; Odintsov, S. D., Consistent modified gravity: dark energy, acceleration and the absence of cosmic doomsday, Class. Quantum Grav., 22, L35, (2005) · Zbl 1062.83538
[26] Mena, O.; Santiago, J.; Weller, J., Constraining inverse-curvature gravity with supernovae, Phys. Rev. Lett., 96, 041103, (2006)
[27] Bamba, K.; Nojiri, S.; Odintsov, S. D., The future of the universe in modified gravitational theories: approaching a finite-time future singularity, J. Cosmol. Astropart. Phys., 0810, 045, (2008)
[28] Betrolami, O.; Boehmer, C. G.; Harko, T.; Lobo, F. S. N., Extra force in \(f(R)\) modified theories of gravity, Phys. Rev. D, 75, 104016, (2007)
[29] Nojiri, S.; Odintsov, S. D., Unified cosmic history in modified gravity: from \(F(R)\) theory to Lorentz noninvariant models, Phys. Rep., 505, 59-144, (2011)
[30] Harko, T.; Lobo, F. S. N.; Nojiri, S.; Odintsov, S. D., \(f(R, T)\) gravity, Phys. Rev. D, 84, 024020, (2011)
[31] Myrzakulov, R.; Sebastiani, L.; Vagnozzi, S., Inflation in \(f(R, \phi)\)-theories and mimetic gravity scenario, Eur. Phys. J. C, 75, 444, (2015)
[32] Sebastiani, L.; Myrzakulov, R., \(F(R)\)-gravity and inflation, Int. J. Geom. Methods Mod. Phys., 12, 1530003, (2015) · Zbl 1327.83294
[33] Houndjo, M. J. S., Reconstruction of \(f(R, T)\) gravity describing matter dominated and accelerated phases, Internat. J. Modern Phys. D, 21, 1250003, (2012) · Zbl 1263.83132
[34] Sahoo, P. K.; Mishra, B.; Reddy, G. C., Axially symmetric cosmological model in \(f(R, T)\) gravity, Eur. Phys. J. Plus, 129, 49, (2014)
[35] Sahoo, P. K.; Mishra, B., Kaluza-Klein dark energy model in the form of wet dark fluid in \(f(R, T)\) gravity, Can. J. Phys., 92, 1062-1067, (2014)
[36] P. H. R. S. Moraes, R. A. C. Correa and G. Ribeiro, The Starobinsky model within the \(f(R, T)\) formalism as a cosmological model, arXiv:1701.01027.
[37] Zimdahl, W., Cosmic antifriction and accelerated expansion, Phys. Rev. D, 64, 063501, (2001)
[38] Misner, C. W., Transport processes in the primordial fireball, Nature, 214, 40-41, (1967)
[39] Misner, C. W., The isotropy of the universe, Astrophys. J., 151, 431-457, (1968)
[40] Klimek, Z., Entropy per particle in the early Bianchi type-I universe, Il Nuovo Cimento B, 35, 249-258, (1976)
[41] Chimento, L. P.; Alejandro, S. J.; Pavon, D., Enlarged quintessence cosmology, Phys. Rev. D, 62, 063508, (2000)
[42] Singh, G. P.; Kale, A. Y., Anisotropic bulk viscous cosmological models with particle creation, Astrophys. Space Sci., 331, 207-219, (2011) · Zbl 1209.83060
[43] Yadav, A. K.; Pradhan, A.; Singh, A. K., Bulk viscous LRS Bianchi-I universe with variable \(G\) and decaying \(\operatorname{\Lambda}\), Astrophys. Space Sci., 337, 379-385, (2012) · Zbl 1238.83094
[44] Jamil, M.; Momeni, D.; Raza, M.; Myrzakulov, R., Reconstruction of some cosmological models in \(f(R, T)\) cosmology, Eur. Phys. J. C, 72, 1999, (2012)
[45] Singh, C. P.; Kumar, S.; Pradhan, A., Early viscous universe with variable gravitational and cosmological constants, Class. Quantum Grav., 24, 455, (2007) · Zbl 1133.83418
[46] Hu, M. G.; Meng, X. H., Bulk viscous cosmology: statefinder and entropy, Phys. Lett. B, 635, 186-194, (2006) · Zbl 1247.83271
[47] Linde, A. D., Inflationary cosmology, Lect. Notes Phys., 738, 1-54, (2008) · Zbl 1172.83004
[48] Ade, P. A. R., Planck 2013 results. XVI. cosmological parameters, Astron. Astrophys., 571, A16, (2014)
[49] Belinskii, V. A.; Khalatnikov, I. M., Influence of viscosity on the character of cosmological evolution, Sov. Phys. JETP, 42, 205, (1975)
[50] Bali, R.; Singh, J. P., Bulk viscous Bianchi type I cosmological models with time-dependent cosmological term \(\operatorname{\Lambda}\), Int. J. Theor. Phys., 47, 3288-3297, (2008) · Zbl 1255.83096
[51] Singh, C. P.; Kumar, S., Viscous fluid cosmology in Bianchi type-I space-time, Int. J. Theor. Phys., 48, 925-936, (2009) · Zbl 1171.83384
[52] Fabris, J. C.; Goncalves, S. V. B.; Rebeiro, R. S., Bulk viscosity driving the acceleration of the universe, Gen. Relativ. Gravit., 38, 495-506, (2006) · Zbl 1093.83050
[53] Saha, B., Nonlinear spinor field in Bianchi type-I universe filled with viscous fluid: numerical solutions, Astrophys. Space Sci., 312, 3-11, (2007) · Zbl 1162.83330
[54] Sharif, M.; Zubair, M., Dynamics of a magnetized Bianchi \(\mathit{V} \mathit{I}_0\) universe with anisotropic fluid, Astrophys. Space Sci., 339, 45-51, (2012) · Zbl 1255.83170
[55] Sharif, M.; Zubair, M., Energy conditions constraints and stability of power law solutions in \(f(R, T)\) gravity, J. Phys. Soc. Jpn., 82, 014002, (2012)
[56] Sharif, M.; Zubair, M., Study of Bianchi I anisotropic model in \(f(R, T)\) gravity, Astrophys. Space Sci., 349, 457-465, (2014)
[57] Bennet, C. L., First-year wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results, Astrophys. J. Suppl., 148, 1, (2003)
[58] Capozziello, S.; Farooq, O.; Luongo, O.; Ratra, B., Cosmographic bounds on the cosmological deceleration-acceleration transition redshift in \(f(R)\) gravity, Phys. Rev. D, 90, 044016, (2014)
[59] Capozziello, S.; Luongo, O.; Saridakis, E. N., Transition redshift in \(f(T)\) cosmology and observational constraints, Phys. Rev. D, 91, 124037, (2015)
[60] Farooq, O.; Madiyar, F.; Crandall, S.; Ratra, B., Hubble parameter measurement constraints on the redshift of the deceleration-acceleration transition, dynamical dark energy, and space curvature, Astrophys. J., 835, 26, (2017)
[61] Moraes, P. H. R. S.; Ribeiro, G.; Correa, R. A. C., A transition from a decelerated to an accelerated phase of the universe expansion from the simplest non-trivial polynomial function of \(T\) in the \(f(R, T)\) formalism, Astrophys. Space Sci., 361, 227, (2016)
[62] Wald, R. M., General Relativity, (1984), University of Chicago Press, Chicago, IL
[63] Carroll, S. M.; Hoffman, M.; Trodden, M., Can the dark energy equation-of-state parameter \(w\) be less than 1?, Phys. Rev. D, 68, 023509, (2003)
[64] Lake, K., Class. Quantum Grav., 21, LI29, (2004)
[65] Zubair, M.; Waheed, S.; Ahmad, Y., Static spherically symmetric wormholes in \(f(R, T)\) gravity, Eur. Phys. J. C, 76, 444, (2016)
[66] Sharif, M.; Rani, S.; Myrzakulov, R., Analysis of \(f(R, T)\) gravity models through energy conditions, Eur. Phys. J. Plus, 128, 123, (2013)
[67] MacCallum, M. A. H., A class of homogeneous cosmological models III: asymptotic behavior, Commun. Math. Phys., 20, 57-84, (1971)
[68] V. Sahni, Exploring dark energy using the statefinder, arXiv:astro-ph/0211084.
[69] Visser, M., Cosmography: cosmology without the Einstein equations, Gen. Relativ. Gravit., 37, 1541-1548, (2005) · Zbl 1080.83026
[70] Rapetti, D.; Allen, S. W.; Amin, M. A.; Blandford, R. D., A kinematical approach to dark energy studies, Mon. Not. R. Astron. Soc., 375, 1510-1520, (2007)
[71] Riess, A. G., Type ia supernova discoveries at \(z > 1\) from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution, Astrophys. J., 607, 665-687, (2004) · Zbl 1369.85001
[72] Astier, P., The supernova legacy survey: measurement of \(\operatorname{\Omega}_M, \operatorname{\Omega}_{\operatorname{\Lambda}}\) and \(\omega\) from the first year data set, Astron. Astrophys., 447, 31-48, (2006)
[73] Sahni, V.; Saini, T. D.; Starobinsky, A. A.; Alam, U., Statefinder, A new geometrical diagnostic of dark energy, JETP Lett., 77, 201-206, (2003)
[74] Feng, C. J., Statefinder diagnosis for Ricci dark energy, Phys. Lett. B, 670, 231-234, (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.