×

zbMATH — the first resource for mathematics

Exact optimal experimental designs with constraints. (English) Zbl 06737701
Summary: The experimental design literature has produced a wide range of algorithms optimizing estimator variance for linear models where the design-space is finite or a convex polytope. But these methods have problems handling nonlinear constraints or constraints over multiple treatments. This paper presents Newton-type algorithms to compute exact optimal designs in models with continuous and/or discrete regressors, where the set of feasible treatments is defined by nonlinear constraints. We carry out numerical comparisons with other state-of-art methods to show the performance of this approach.
Reviewer: Reviewer (Berlin)

MSC:
62 Statistics
Software:
ipfilter
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Addelman, S, Symmetrical and asymmetrical fractional factorial plans, Technometrics, 4, 47-58, (1962)
[2] Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS. Oxford University Press, Oxford (2007) · Zbl 1183.62129
[3] Atwood, CL, Sequences converging to D-optimal designs of experiments, Ann. Stat., 1, 342-352, (1973) · Zbl 0263.62047
[4] Atwood, CL, Convergent design sequences, for sufficiently regular optimality criteria, Ann. Stat., 4, 1124-1138, (1976) · Zbl 0344.62064
[5] Borchers, B; Mitchell, JE, An improved branch and bound algorithm for mixed integer nonlinear programs, Comput. Oper. Res., 21, 359-367, (1994) · Zbl 0797.90069
[6] Borchers, B; Mitchell, JE, A computational comparison of branch and bound and outer approximation algorithms for 0-1 mixed integer nonlinear programs, Comput. Oper. Res., 24, 699-701, (1997) · Zbl 0894.90114
[7] Byrd, RH; Hribar, ME; Nocedal, J, An interior point algorithm for large-scale nonlinear programming, SIAM J. Optim., 9, 877-900, (1999) · Zbl 0957.65057
[8] Byrd, RH; Schnabel, RB; Shultz, GA, A trust region algorithm for nonlinearly constrained optimization, SIAM J. Numer. Anal., 24, 1152-1170, (1987) · Zbl 0631.65068
[9] Chen, RB; Chang, SP; Wang, W; Tung, HC; Wong, WK, Minimax optimal designs via particle swarm optimization methods, Stat. Comput., 25, 1-14, (2014) · Zbl 1332.62265
[10] Cook, D; Fedorov, V, Constrained optimization of experimental design, Statistics, 26, 129-178, (1995) · Zbl 0812.62080
[11] Cook, RD; Nachtsheim, CJ, A comparison of algorithms for constructing exact D-optimal designs, Technometrics, 22, 315-324, (1980) · Zbl 0459.62061
[12] Dennis, JE; Schnabel, RB, Numerical methods for unconstrained optimization and nonlinear equations, SIAM, 16, 168-174, (1996) · Zbl 0847.65038
[13] Fedorov, V.V.: Theory of Optimal Experiments. Academic Press, New York (1972)
[14] Fletcher, R; Gould, NIM; Leyffer, S; Toint, PL; Wachter, A, Global convergence of a trust-region sqp-filter algorithm for general nonlinear programming, SIAM J. Optim., 13, 635, (2002) · Zbl 1038.90076
[15] Fletcher, R; Leyffer, S, Nonlinear programming without a penalty function, Math. Program., 91, 239, (2002) · Zbl 1049.90088
[16] Gondzio, J; Grothey, A, Exploiting structure in parallel implementation of interior point methods for optimization, Comput. Manag. Sci., 6, 135-160, (2009) · Zbl 1170.90518
[17] Harman, R; Filová, L, Computing efficient exact designs of experiments using integer quadratic programming, Comput. Stat. Data Anal., 71, 1159-1167, (2014) · Zbl 06975454
[18] Heinkenschloss, M; Ulbrich, M; Ulbrich, S, Superlinear and quadratic convergence of affine-scaling interior-point Newton methods for problems with simple bounds without strict complementarity assumption, Math. Program., 86, 615-635, (1999) · Zbl 0945.49023
[19] Johnson, ME; Nachtsheim, CJ, Some guidelines for constructing exact D-optimal designs on convex design spaces, Technometrics, 25, 271-277, (1983) · Zbl 0526.62070
[20] Karlin, S; Studden, WJ, Optimal experimental designs, Ann. Math. Stat., 37, 783-815, (1966) · Zbl 0151.23904
[21] Kiefer, J, Optimum experimental designs, J. R. Stat. Soc. Ser. B Stat. Methodol., 21, 272-319, (1959) · Zbl 0108.15303
[22] Kiefer, J; Wolfowitz, J, Optimum designs in regression problems, Ann. Math. Stat., 30, 271-294, (1959) · Zbl 0090.11404
[23] Kiefer, J; Wolfowitz, J, The equivalence of two extremum problems, Can. J. Math., 12, 363-366, (1960) · Zbl 0093.15602
[24] Kuhfeld, WF; Tobias, RD; Garratt, M, Efficient experimental design with marketing research applications, J. Mark. Res., 31, 545-557, (1994)
[25] Lin, CD; Anderson-Cook, CM; Hamada, MS; Moore, LM; Sitter, RR, Using genetic algorithms to design experiments: a review, Qual. Reliab. Eng. Int., 31, 155-167, (2015)
[26] Magnus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley, New York (1999) · Zbl 0912.15003
[27] Mandal, A; Wong, WK; Yu, Y; Dean, A (ed.); Morris, M (ed.); Stufken, J (ed.); Bingham, D (ed.), Algorithmic searches for optimal designs, (2015), Boca Raton · Zbl 1352.62126
[28] Mandal, A; Wu, CJ; Johnson, K, Selc: sequential elimination of level combinations by means of modified genetic algorithms, Technometrics, 48, 273-283, (2006)
[29] Mitchell, TJ, An algorithm for the construction of “D-optimal” experimental designs, Technometrics, 16, 203-210, (1974) · Zbl 0297.62055
[30] Nguyen, NK; Miller, AJ, A review of some exchange algorithms for constructing discrete d-optimal designs, Comput. Stat. Data Anal., 14, 489-498, (1992) · Zbl 0937.62628
[31] Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2006) · Zbl 1104.65059
[32] Sagnol, G, Computing optimal designs of multiresponse experiments reduces to second-order cone programming, J. Stat. Plan. Inference, 141, 1684-1708, (2011) · Zbl 1207.62156
[33] St. John, RC; Draper, NR, D-optimality for regression designs: a review, Technometrics, 17, 15-23, (1975) · Zbl 0295.62081
[34] Studden, WJ, Elfving’s theorem and optimal designs for quadratic loss, Ann. Math. Stat., 42, 1613-1621, (1971) · Zbl 0274.62051
[35] Tseng, P; Pillo, G (ed.); Giannessi, F (ed.), Error bounds and superlinear convergence analysis of some Newton-type methods in optimization, 445-462, (2000), New York · Zbl 0965.65091
[36] Ulbrich, M; Ulbrich, S; Vicente, LN, A globally convergent primal-dual interior-point filter method for nonlinear programming, Math. Program., 100, 379-410, (2004) · Zbl 1070.90110
[37] Vicente, LN; Wright, SJ, Local convergence of a primal-dual method for degenerate nonlinear programming, Comput. Optim. Appl., 22, 311-328, (2002) · Zbl 1039.90093
[38] Whittle, P.: Some general points in the theory of optimal experimental design. J. R. Stat. Soc. Ser. B Stat. Methodol. 35(1), 123-130 (1973) · Zbl 0282.62065
[39] Woods, D, Robust designs for binary data: applications of simulated annealing, J. Stat. Comput. Simul., 80, 29-41, (2010) · Zbl 1184.62134
[40] Wright, SJ; Orban, D, Properties of the log-barrier function on degenerate nonlinear programs, Math. Oper. Res., 27, 585-613, (2002) · Zbl 1082.90566
[41] Wynn, HP, The sequential generation of D-optimum experimental designs, Ann. Math. Stat., 41, 1655-1664, (1970) · Zbl 0224.62038
[42] Wynn, HP, Jack kiefer’s contributions to experimental design, Ann. Stat., 12, 416-423, (1984) · Zbl 0544.62074
[43] Yu, Y, D-optimal designs via a cocktail algorithm, Stat. Comput., 21, 475-481, (2011) · Zbl 1270.62107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.