×

zbMATH — the first resource for mathematics

Automatic moment-closure approximation of spatially distributed collective adaptive systems. (English) Zbl 1368.68316

MSC:
68U20 Simulation (MSC2010)
65C20 Probabilistic models, generic numerical methods in probability and statistics
68M14 Distributed systems
68Q45 Formal languages and automata
Software:
CARMA; PALOMA; PALOMA; SCEL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexander Andreychenko, Linar Mikeev, and Verena Wolf. 2015. Model reconstruction for moment-based stochastic chemical kinetics. ACM Transactions on Modeling and Computer Simulation 25, 2, 12. DOI:http://dx.doi.org/10.1145/2699712 · Zbl 1365.92037 · doi:10.1145/2699712
[2] Charles Antony and Richard Hoare. 1985. Communicating Sequential Processes. Vol. 178. Prentice Hall, Englewood Cliffs, CA.
[3] Luca Bortolussi, Rocco De Nicola, Vashti Galpin, Stephen Gilmore, Jane Hillston, Diego Latella, Michele Loreti, and Mieke Massink. 2015. CARMA: Collective adaptive resource-sharing Markovian agents. In Proceedings of the 13th Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL’15). 16–31. DOI:http://dx.doi.org/10.4204/EPTCS.194.2 · doi:10.4204/EPTCS.194.2
[4] Dario Bruneo, Marco Scarpa, Andrea Bobbio, Davide Cerotti, and Marco Gribaudo. 2012. Markovian agent modeling swarm intelligence algorithms in wireless sensor networks. Performance Evaluation 69, 3, 135–149. DOI:http://dx.doi.org/10.1016/j.peva.2010.11.007 · Zbl 06016283 · doi:10.1016/j.peva.2010.11.007
[5] Luca Cardelli. 2008a. From processes to ODEs by chemistry. In Proceedings of the 5th IFIP International Conference on Theoretical Computer Science (TCS’08). 261–281. DOI:http://dx.doi.org/10.1007/978-0-387-09680-3_18 · doi:10.1007/978-0-387-09680-3_18
[6] Luca Cardelli. 2008b. On process rate semantics. Theoretical Computer Science 391, 3, 190–215. DOI:http://dx.doi.org/10.1016/j.tcs.2007.11.012 · Zbl 1133.68054 · doi:10.1016/j.tcs.2007.11.012
[7] Davide Cerotti, Marco Gribaudo, Andrea Bobbio, Carlos T. Calafate, and Pietro Manzoni. 2010. A Markovian agent model for fire propagation in outdoor environments. In Computer Performance Engineering. Springer, 131–146. DOI:http://dx.doi.org/10.1007/978-3-642-15784-4_9 · Zbl 05805012 · doi:10.1007/978-3-642-15784-4_9
[8] Stefan Engblom. 2006. Computing the moments of high dimensional solutions of the master equation. Applied Mathematics and Computation 180, 2, 498–515. DOI:http://dx.doi.org/10.1016/j.amc.2005.12.032 · Zbl 1103.65011 · doi:10.1016/j.amc.2005.12.032
[9] Cheng Feng and Jane Hillston. 2014. PALOMA: A process algebra for located Markovian agents. In Quantitative Evaluation of Systems. Springer, 265–280. DOI:http://dx.doi.org/10.1007/978-3-319-10696-0_22 · Zbl 06461607 · doi:10.1007/978-3-319-10696-0_22
[10] Daniel T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 25, 2340–2361. DOI:http://dx.doi.org/10.1021/j100540a008 · doi:10.1021/j100540a008
[11] Marcel C. Guenther and Jeremy T. Bradley. 2011. Higher moment analysis of a spatial stochastic process algebra. In Computer Performance Engineering. Springer, 87–101. DOI:http://dx.doi.org/10.1007/978-3-642-39408-9_9 · Zbl 06197230 · doi:10.1007/978-3-642-39408-9_9
[12] Marcel C. Guenther, Anton Stefanek, and Jeremy T. Bradley. 2013. Moment closures for performance models with highly non-linear rates. In Computer Performance Engineering. Springer, 32–47. DOI:http://dx.doi.org/10.1007/978-3-642-36781-6_3 · Zbl 06294445 · doi:10.1007/978-3-642-36781-6_3
[13] Richard A. Hayden and Jeremy T. Bradley. 2010. A fluid analysis framework for a Markovian process algebra. Theoretical Computer Science 411, 22, 2260–2297. DOI:http://dx.doi.org/10.1016/j.tcs.2010.02.001 · Zbl 1334.68151 · doi:10.1016/j.tcs.2010.02.001
[14] David Hiebeler. 2006. Moment equations and dynamics of a household SIS epidemiological model. Bulletin of Mathematical Biology 68, 6, 1315–1333. DOI:http://dx.doi.org/10.1007/s11538-006-9080-1 · Zbl 1334.92401 · doi:10.1007/s11538-006-9080-1
[15] Jane Hillston. 2005a. A Compositional Approach to Performance Modelling. CUP. · Zbl 1080.68003
[16] Jane Hillston. 2005b. Fluid flow approximation of PEPA models. In Proceedings of the 2nd International Conference on Quantitative Evaluation of Systems. IEEE, Los Alamitos, CA, 33–42. DOI:http://dx.doi.org/10.1109/QEST.2005.12 · doi:10.1109/QEST.2005.12
[17] Matthew J. Keeling. 1999. The effects of local spatial structure on epidemiological invasions. Proceedings of the Royal Society of London B: Biological Sciences 266, 1421, 859–867. DOI:http://dx.doi.org/10.1098/rspb.1999.0716 · doi:10.1098/rspb.1999.0716
[18] Matthew J. Keeling. 2000. Multiplicative moments and measures of persistence in ecology. Journal of Theoretical Biology 205, 2, 269–281. DOI:http://dx.doi.org/10.1006/jtbi.2000.2066 · doi:10.1006/jtbi.2000.2066
[19] Isthrinayagy Krishnarajah, Alex Cook, Glenn Marion, and Gavin Gibson. 2005. Novel moment closure approximations in stochastic epidemics. Bulletin of Mathematical Biology 67, 4, 855–873. DOI:http://dx.doi.org/10.1016/j.bulm.2004.11.002 · Zbl 1334.92411 · doi:10.1016/j.bulm.2004.11.002
[20] Thomas G. Kurtz. 1970. Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability 7, 1, 49–58. DOI:http://dx.doi.org/10.2307/3212147 · Zbl 0191.47301 · doi:10.2307/3212147
[21] Diego Latella, Michele Loreti, Mieke Massink, and Valerio Senni. 2014. Stochastically timed predicate-based communication primitives for autonomic computing. Electronic Proceedings in Theoretical Computer Science 154, 1–16. DOI:http://dx.doi.org/10.4204/EPTCS.154.1 · doi:10.4204/EPTCS.154.1
[22] Peter Midgley. 2009. The role of smart bike-sharing systems in urban mobility. Journeys 2, 23–31.
[23] Cecilia Nardini, Balázs Kozma, and Alain Barrat. 2008. Who’s talking first? Consensus or lack thereof in coevolving opinion formation models. Physical Review Letters 100, 15, 158701. DOI:http://dx.doi.org/10.1103/PhysRevLett.100.158701 · doi:10.1103/PhysRevLett.100.158701
[24] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. 2014. A formal approach to autonomic systems programming: The SCEL language. ACM Transactions on Autonomous and Adaptive Systems 9, 2, 7. DOI:http://dx.doi.org/10.1145/2619998 · Zbl 1416.68051 · doi:10.1145/2619998
[25] Emanuele Pugliese and Claudio Castellano. 2009. Heterogeneous pair approximation for voter models on networks. Europhysics Letters 88, 5, 58004. DOI:http://dx.doi.org/10.1209/0295-5075/88/58004 · doi:10.1209/0295-5075/88/58004
[26] Aaditya V. Rangan and David Cai. 2006. Maximum-entropy closures for kinetic theories of neuronal network dynamics. Physical Review Letters 96, 17, 178101. DOI:http://dx.doi.org/10.1103/PhysRevLett.96.178101 · Zbl 1107.82037 · doi:10.1103/PhysRevLett.96.178101
[27] Tim Rogers. 2011. Maximum-entropy moment-closure for stochastic systems on networks. Journal of Statistical Mechanics: Theory and Experiment 2011, 05, P05007. DOI:http://dx.doi.org/10.1088/1742-5468/2011/05/P05007 · doi:10.1088/1742-5468/2011/05/P05007
[28] A. Singer. 2004. Maximum entropy formulation of the Kirkwood superposition approximation. Journal of Chemical Physics 121, 8, 3657–3666. DOI:http://dx.doi.org/10.1063/1.1776552 · doi:10.1063/1.1776552
[29] Abhyudai Singh and Joao Pedro Hespanha. 2006a. Lognormal moment closures for biochemical reactions. In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, Los Alamitos, CA, 2063–2068. DOI:http://dx.doi.org/10.1109/CDC.2006.376994 · doi:10.1109/CDC.2006.376994
[30] Abhyudai Singh and Joao Pedro Hespanha. 2006b. Moment closure techniques for stochastic models in population biology. In Proceedings of the American Control Conference. IEEE, Los Alamitos, CA, 4730–4735. DOI:http://dx.doi.org/10.1109/ACC.2006.1657468 · doi:10.1109/ACC.2006.1657468
[31] Mirco Tribastone, Stephen Gilmore, and Jane Hillston. 2012. Scalable differential analysis of process algebra models. IEEE Transactions on Software Engineering 38, 1, 205–219. DOI:http://dx.doi.org/10.1109/TSE.2010.82 · doi:10.1109/TSE.2010.82
[32] Peter Whittle. 1957. On the use of the normal approximation in the treatment of stochastic processes. Journal of the Royal Statistical Society. Series B (Methodological) 19, 2, 268–281. · Zbl 0091.30502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.