×

Algorithm 946: ReLIADiff – a C++ software package for real Laplace transform inversion based on algorithmic differentiation. (English) Zbl 1371.65134


MSC:

65R10 Numerical methods for integral transforms
65Y15 Packaged methods for numerical algorithms
44A10 Laplace transform
65D25 Numerical differentiation
65R30 Numerical methods for ill-posed problems for integral equations
65R32 Numerical methods for inverse problems for integral equations

Citations:

Zbl 0709.65505
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] J. Abate and P. Valko. 2002. Uniform Resource Locators (URL). Wolfram Information Center. http://library. wolfram.com/infocenter/MathSource/4738/.
[2] J. Abate and W. Whitt. 1996. On the Laguerre method for numerically inverting Laplace transforms. J. Comput. 8, 4, 413–427. · Zbl 0887.60100
[3] R. S. Anderssen and F. R. de Hoog. 1984. Finite difference methods for the numerical differentiation of non-exact data. Computing 33, 259–267. · Zbl 0537.65018
[4] R. Bellman, R. Kalaba, and J. A. Lockett. 1966. Numerical inversion of the Laplace transform: Applications to biology, economics, engineering, and physics. Elsevier. · Zbl 0147.14003
[5] C. Bendtsen and O. Stauning. 1997. TADIFF, A flexible C++ package for automatic differentiation using Taylor series expansion. http://citeseer.ist.psu.edu/bendtsen97tadiff.html.
[6] R. Campagna, L. D’Amore, and A. Murli. 2007. An efficient algorithm for regularization of Laplace transform inversion in real case. J. Computat. Appl. Math. 210, 84–98. · Zbl 1144.65078
[7] A. M. Cohen. 2007. Numerical Methods for Laplace Transform Inversion. Springer. · Zbl 1127.65094
[8] J. Cullum. 1971. Numerical differentiation and regularization. SIAM J. Numer. Anal. 8, 254–265. · Zbl 0224.65005
[9] S. Cuomo, L. D’Amore, A. Murli, and M. Rizzardi. 2007. Computation of the inverse Laplace transform based on a collocation method which uses only real values. J. Computat. Appl. Math. 198, 98–115. · Zbl 1105.65120
[10] S. Cuomo, L. D’Amore, A. Murli, and M. Rizzardi. 2008. A modification of Weeks’ method for numerical inversion of the Laplace transform in the real case based on automatic differentiation. In Advances in Automatic Differentiation, Christian H. Bischof, H. Martin Bücker, Paul D. Hovland, Uwe Naumann, and J. Utke, Eds., (Springer). 45–54. · Zbl 1154.65379
[11] L. D’Amore and A. Murli. 2002. Regularization of a Fourier series based method for real inversion of Laplace transform. Inverse Prob. 18, 1185–1205. · Zbl 1005.65139
[12] L. D’Amore, R. Campagna, A. Galletti, L. Marcellino, and A. Murli. 2012. A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis. Inver. Prob. 28. · Zbl 1257.65074
[13] L. D’Amore, R. Campagna, V. Mele, and A. Murli. 2013a. ReLaTIve. An ANSI C90 software package for the real Laplace transform inversion. Numer. Algor. 63, 187–211. · Zbl 1267.65202
[14] L. D’Amore, G. Laccetti, and A. Murli. 1999a. An implementation of a Fourier series method for the numerical inversion of the Laplace transform. ACM Trans. Math. Soft. 25, 279–305. · Zbl 0962.65109
[15] L. D’Amore, G. Laccetti, and A. Murli. 1999b. Algorithm 796: A Fortran software package for the numerical inversion of the Laplace transform based on a Fourier series method. ACM Trans. Math. Soft. 25, 306–315. · Zbl 0962.65110
[16] L. D’Amore, V. Mele, and A. Murli. 2013b. Performance analysis of the Taylor expansion coefficients computation as implemented by the software package TADIFF. J. Numer. Anal. Indust. Appl. Math. 8, 1–2, 1–12.
[17] B. Davies and D. Martin. 1979. Numerical inversion of Laplace transform. A survey and comparison of methods. J. Comput. Phys. 33, 1–32. · Zbl 0416.65077
[18] D. G. Duffy. 1993. On the numerical inversion of Laplace transforms: Comparison of three new methods on characteristic problems from applications. ACM Trans. Math. Softw. 19, 3, 333–359. · Zbl 0892.65079
[19] W. Fair. Jr. 2008. Numerical Laplace transforms and inverse transforms in C#, http://www.codeproject.com/KB/recipes/LaplaceTransforms.aspx?msg=3150794.
[20] P. F. Faure and S. Rodts. 2008. Proton NMR relaxation as a probe for setting cement pastes. Magn. Reson. Imaging 26, 8, 1183–1196.
[21] S. Garbow, G. Giunta, N. J. Lyness, and A. Murli. 1988. Algorithm 662: A Fortran software package for the numerical inversion of a Laplace transform based on Week’s method. ACM Trans. Math. Softw. 54, 163–170. · Zbl 0642.65086
[22] G. Giunta, G. Laccetti, and M. Rizzardi. 1988. More on Weeks method for the numerical inversion of the Laplace trasform. Numer. Mat. 193, 193–200. · Zbl 0659.65138
[23] G. Giunta and A. Murli. 1989. An algorithm for inverting the Laplace transform using real and real sampled function values. In Proceedings of the IMACS Symposium on Numerical and Applied Mathematics, C. Brezinski, Ed., 589–592.
[24] G. Giunta, A. Murli, and G. Schmid. 1995. Error analysis of Rjabov algorithm for inverting Laplace transforms. Ricerche Matemat. 44, 1, 207–219. · Zbl 0915.65131
[25] A. Griewank and K. Kulshreshtha. 2012. On the numerical stability of algorithmic differentiation. Computing 94, 125–149. · Zbl 1238.65013
[26] C. W. Groetsch. 1990. The theory of Tikhonov regularization for Fredholm equations of the first kind. Research Notes in Mathematics, Pitman Advanced Publishing Program. · Zbl 0696.65094
[27] M. Hanke and O. Scherzer. 2001. Inverse problems light: Numerical differentiation. Amer. Math. Monthly 108, 6, 512–521. · Zbl 1002.65029
[28] P. Henrici. 1966. Elements of Numerical Analysis. Wiley. · JFM 02.0076.02
[29] N. Higham. 1996. Accuracy and Stability of Numerical Algorithms. SIAM. · Zbl 0847.65010
[30] V. V. Kryzhniy. 2004. On regularization of numerical inversion of Laplace transforms J. Inverse Ill-Posed Prob. 12, 3, 279–296. · Zbl 1059.65119
[31] Y. Y. Lin, N. H. Ge, and L. P. Hwang. 1993. Multiexponential analysis of relaxation decays based on linear, prediction and singular-value decomposition. J. Magn. Reson. A 105, 6571.
[32] B. Magyari, I. Ioan, and P. P. Valko. 2010. Stokes first problem for micropolar fluids. Fluid Dynam. Res. 42, 1–15. · Zbl 1423.76098
[33] W. Magnus, F. Oberhettinger, and R. P. Soni. 1966. Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, New York. · Zbl 0143.08502
[34] C. Montella, R. Michel, and J. P. Diard. 2007. Numerical inversion of Laplace transforms.: A useful tool for evaluation of chemical diffusion coefficients in ion-insertion electrodes investigated by Pitt. J. Electroanal. Chem. 608, 1, 15, 37–46.
[35] A. Murli, S. Cuomo, L. D’Amore, and A. Galletti. 2007. Numerical regularization of a real inversion formula based on the Laplace transform’s eigenfunction expansion of the inverse function. Inv. Prob. 23, 713–731. · Zbl 1122.65128
[36] R. Piessens. 1972. A new numerical method for the inversion of the Laplace transform. J. Inst. Math. Appl. 10, 185–192. · Zbl 0246.65035
[37] R. Piessens. 1982. Algorithm 113: Inversion of the Laplace transform. Computer J. (Algor. Supplement) 25, 2, 278–282. · Zbl 0477.65089
[38] A. G. Ramm and A. B. Smirnova. 2001. On stable numerical differentiation. Math. Computat. 70, 235, 1131–1153. · Zbl 0973.65015
[39] H. Stehfest. 1970. Algorithm 368: Numerical inversion of Laplace transform Commun. ACM 13, 47–49.
[40] G. Szego. 1939. Orthogonal polynomials. In American Mathematical Society Colloquium Publications, Vol. XXIII.
[41] P. Valko and S. Vaida. 2002. Inversion of noise-free Laplace transforms: Towards a standardized set of test problems. Inverse Problems Eng. 10, 467–483.
[42] L. Van Der Meerd, S. M. Melnikov, F. J. Vergeldt, E. G. Novikov, and H. Van As. 2002. Modelling of self-diffusion and relaxation time NMR in multicompartment systems with cylindrical geometry. J. Magn. Reson. 156, 2, 213–221.
[43] W. Weeks. 1966. Numerical inversion of the Laplace transform using Laguerre functions. J. ACM 13, 419–429. · Zbl 0141.33401
[44] J. Weidemann. 1999. Algorithms for parameter selection in the Weeks method for inverting the Laplace transform. SIAM J. Sci. Comput. 21, 1, 118–128. · Zbl 0944.65137
[45] X. Zhao. 2004. An efficient approach for the numerical inversion of Laplace transform and its application in dynamic fracture analysis of a piezoelectric laminate. Int. J. Solids Structures 41, 13, 3653–3674. · Zbl 1071.74056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.