×

zbMATH — the first resource for mathematics

Semantics and efficient simulation algorithms of an expressive multilevel modeling language. (English) Zbl 1369.93068

MSC:
93A30 Mathematical modelling of systems (MSC2010)
92C37 Cell biology
92C42 Systems biology, networks
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
Software:
BioNetGen; CARMA; Haskell
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Banks and L. Chwif. 2011. Warnings about simulation. Journal of Simulation 5, 4, 279–291. · doi:10.1057/jos.2010.24
[2] Fernando J. Barros. 1997. Modeling formalisms for dynamic structure systems. ACM Transactions on Modeling and Computer Simulation 7, 4, 501–515. DOI:http://dx.doi.org/10.1145/268403.268423 · Zbl 0916.93012 · doi:10.1145/268403.268423
[3] Marco Beccuti, Mary Ann Blätke, Martin Falk, Simon Hardy, Monika Heiner, Carsten Maus, Sebastian Nähring, and Christian Rohr. 2015. Dictyostelium discoideum: Aggregation and synchronisation of amoebas in time and space. Dagstuhl Reports: Multiscale Spatial Computational Systems Biology (Dagstuhl Seminar 14481) 4, 11, 195–214. DOI:http://dx.doi.org/10.4230/DagRep.4.11.138
[4] Arne T. Bittig, Fiete Haack, Carsten Maus, and Adelinde M. Uhrmacher. 2011. Adapting rule-based model descriptions for simulating in continuous and hybrid space. In Proceedings of the 9th International Conference on Computational Methods in Systems Biology (CMSB’11). 161–170. · doi:10.1145/2037509.2037533
[5] Arne T. Bittig, Florian Reinhardt, Simone Baltrusch, and Adelinde M. Uhrmacher. 2014. Predictive modelling of mitochondrial spatial structure and health. In Proceedings of the 12th International Conference on Computational Methods in Systems Biology (CMSB’14). 252–255. · Zbl 06489130 · doi:10.1007/978-3-319-12982-2_20
[6] Michael L. Blinov, James R. Faeder, Byron Goldstein, and William S. Hlavacek. 2004. BioNetGen: Software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20, 17, 3289–3291. · doi:10.1093/bioinformatics/bth378
[7] J. T. Bonner and L. J. Savage. 1947. Evidence for the formation of cell aggregates by chemotaxis in the development of the slime mold Dictyostelium discoideum. Journal of Experimental Zoology 106, 1, 1–26. · doi:10.1002/jez.1401060102
[8] Luca Bortolussi, Rocco De Nicola, Vashti Galpin, Stephen Gilmore, Jane Hillston, Diego Latella, Michele Loreti, and Mieke Massink. 2015. CARMA: Collective adaptive resource-sharing Markovian agents. In Proceedings of the 13th Workshop on Quantitative Aspects of Programming Languages and Systems (QAPL’15). 16–31. DOI:http://dx.doi.org/10.4204/EPTCS.194.2 · doi:10.4204/EPTCS.194.2
[9] Olivier Bouissou and Alexandre Chapoutot. 2012. An operational semantics for Simulink’s simulation engine. In Proceedings of the 13th ACM International Conference on Languages, Compilers, Tools, and Theory for Embedded Systems (LCTES’12). 129–138. · doi:10.1145/2248418.2248437
[10] Daniel S. Calovi, Leonardo G. Brunnet, and Rita M. C. de Almeida. 2010. cAMP diffusion in Dictyostelium discoideum: A Green’s function method. Physical Review E 82, 1, 011909. DOI:http://dx.doi.org/10.1103/PhysRevE.82.011909 · doi:10.1103/PhysRevE.82.011909
[11] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. 2005. The slow-scale stochastic simulation algorithm. Journal of Chemical Physics 122, 1, 14416. DOI:http://dx.doi.org/10.1063/1.1824902 · Zbl 1088.80004 · doi:10.1063/1.1824902
[12] Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. 2006. Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics 124, 4, 044109. DOI:http://dx.doi.org/10.1063/1.2159468 · doi:10.1063/1.2159468
[13] Yang Cao, Hong Li, and Linda Petzold. 2004. Efficient formulation of the stochastic simulation algorithm for chemically reacting systems. Journal of Chemical Physics 121, 9, 4059–4067. DOI:http://dx.doi.org/10.1063/1.1778376 · doi:10.1063/1.1778376
[14] Troels Christoffer Damgaard, Espen Højsgaard, and Jean Krivine. 2012. Formal cellular machinery. Electronic Notes in Theoretical Computer Science 284, 55–74. DOI:http://dx.doi.org/10.1016/j.entcs.2012.05.015 · Zbl 1283.92039 · doi:10.1016/j.entcs.2012.05.015
[15] Vincent Danos, Jérôme Feret, Walter Fontana, and Jean Krivine. 2007. Scalable simulation of cellular signaling networks. In Proceedings of the 5th Asian Symposium on Programming Languages and Systems (APLAS’07). 139–157. · Zbl 05275792 · doi:10.1007/978-3-540-76637-7_10
[16] Vincent Danos and Cosimo Laneve. 2004. Formal molecular biology. Theoretical Computer Science 325, 1, 69–110. · Zbl 1071.68041 · doi:10.1016/j.tcs.2004.03.065
[17] E. Weinan, D. Liu, and E. Vanden-Eijnden. 2005. Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates. Journal of Chemical Physics 123, 19, 194107. DOI:http://dx.doi.org/10.1063/1.2109987 · Zbl 1162.80003 · doi:10.1063/1.2109987
[18] James R. Faeder. 2011. Toward a comprehensive language for biological systems. BMC Biology 9, 1, 68.
[19] James R. Faeder, Michael L. Blinov, and William S. Hlavacek. 2009. Rule-based modeling of biochemical systems with BioNetGen. Methods in Molecular Biology 500, 113–167. · doi:10.1007/978-1-59745-525-1_5
[20] Jasmin Fisher and Thomas A. Henzinger. 2007. Executable cell biology. Nature Biotechnology 25, 11, 1239–1249. DOI:http://dx.doi.org/10.1038/nbt1356 · doi:10.1038/nbt1356
[21] Michael A. Gibson and Jehoshua Bruck. 2000. Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Chemical Physics 104, 9, 1876–1889. DOI:http://dx.doi.org/10.1021/jp993732q · doi:10.1021/jp993732q
[22] Daniel T. Gillespie. 1977. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81, 25, 2340–2361. · doi:10.1021/j100540a008
[23] Leonard A. Harris, Justin S. Hogg, and James R. Faeder. 2009. Compartmental rule-based modeling of biochemical systems. In Proceedings of the 2009 Winter Simulation Conference (WSC’2009). 908–919. · doi:10.1109/WSC.2009.5429719
[24] Tobias Helms, Roland Ewald, Stefan Rybacki, and Adelinde M. Uhrmacher. 2015. Automatic runtime adaptation for component-based simulation algorithms. ACM Transactions on Modeling and Computer Simulation 26, 1, 7:1–7:24. DOI:http://dx.doi.org/10.1145/2821509 · Zbl 06860028 · doi:10.1145/2821509
[25] Tobias Helms, Martin Luboschik, Heidrun Schumann, and Adelinde M. Uhrmacher. 2013. An approximate execution of rule-based multi-level models. In Proceedings of the 11th International Conference on Computational Methods in Systems Biology (CMSB’13). 19–32. · Zbl 06507492 · doi:10.1007/978-3-642-40708-6_3
[26] Espen Højsgaard and Jean Krivine. 2011. Towards Scalable Simulation of Stochastic Bigraphs. Technical Report TR-2011-148. IT University of Copenhagen.
[27] Michael Hucka, Lucian P. Smith, Darren J. Wilkinson, Frank T. Bergmann, Stefan Hoops, Sarah M. Keating, Sven Sahle, and James C. Schaff. 2010. The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core. Available at http://dx.doi.org/10.1038/npre.2010.4123.1 · doi:10.1038/npre.2010.4123.1
[28] Matthias Jeschke, Roland Ewald, and Adelinde M. Uhrmacher. 2011. Exploring the performance of spatial stochastic simulation algorithms. Journal of Computational Physics 230, 7, 2562–2574. DOI:http://dx.doi.org/10.1016/j.jcp.2010.12.030 · Zbl 1316.65012 · doi:10.1016/j.jcp.2010.12.030
[29] Mathias John. 2010. Reaction Constraints for the Pi-Calculus—A Language for the Stochastic and Spatial Modeling of Cell-Biological Processes. Ph.D. Dissertation. University of Rostock.
[30] Mathias John, Cédric Lhoussaine, Joachim Niehren, and Adelinde M. Uhrmacher. 2008. The attributed pi calculus. In Computational Methods in Systems Biology. Lecture Notes in Computer Science, Vol. 5307. Springer, 83–102. · Zbl 05351395 · doi:10.1007/978-3-540-88562-7_10
[31] Mathias John, Cédric Lhoussaine, Joachim Niehren, and Adelinde Uhrmacher. 2010. The attributed pi calculus with priorities. ACM Transactions on Computational Systems Biology 5945, 12, 13–76. · Zbl 1275.92023
[32] Mathias John, Cédric Lhoussaine, Joachim Niehren, and Cristian Versari. 2011. Biochemical reaction rules with constraints. In Proceedings of the 20th European Symposium on Programming (ESOP’11). 338–357. · Zbl 1326.68050 · doi:10.1007/978-3-642-19718-5_18
[33] Simon L. Peyton Jones. 2003. Haskell 98 Language and Libraries: The Revised Report. Cambridge University Press, Cambridge, England. · Zbl 1067.68041
[34] L. N. Joppa, G. McInerny, R. Harper, L. Salido, K. Takeda, K. O’Hara, D. Gavaghan, and S. Emmott. 2013. Troubling trends in scientific software use. Science 340, 6134, 814–815. · doi:10.1126/science.1231535
[35] Jongrae Kim, Pat Heslop-Harrison, Ian Postlethwaite, and Declan G. Bates. 2007. Stochastic noise and synchronisation during Dictyostelium aggregation make cAMP oscillations robust. PLoS Computational Biology 3, 11, e218. DOI:http://dx.doi.org/10.1371/journal.pcbi.0030218 · Zbl 1298.93205 · doi:10.1371/journal.pcbi.0030218
[36] Jean Krivine, Robin Milner, and Angelo Troina. 2008. Stochastic bigraphs. Electronic Notes in Theoretical Computer Science 218, 73–96. DOI:http://dx.doi.org/10.1016/j.entcs.2008.10.006 · Zbl 1286.68354 · doi:10.1016/j.entcs.2008.10.006
[37] Tomas G. Kurtz. 1981. Approximation of Population Processes. SIAM. · doi:10.1137/1.9781611970333
[38] Carsten Maus. 2013. Toward Accessible Multilevel Modeling in Systems Biology: A Rule-Based Language Concept. Ph.D. Dissertation. University of Rostock.
[39] Carsten Maus, Stefan Rybacki, and Adelinde M. Uhrmacher. 2011. Rule-based multi-level modeling of cell biological systems. BMC Systems Biology 5, 166. DOI:http://dx.doi.org/10.1186/1752-0509-5-166 · doi:10.1186/1752-0509-5-166
[40] Orianne Mazemondet, Mathias John, Stefan Leye, Arndt Rolfs, and Adelinde M. Uhrmacher. 2012. Elucidating the sources of β-catenin dynamics in human neural progenitor cells. PLoS ONE 7, 8, e42792.
[41] Orianne Mazemondet, Mathias John, Carsten Maus, Adelinde M. Uhrmacher, and Arndt Rolfs. 2009. Integrating diverse reaction types into stochastic models: A signaling pathway case study in the imperative π-calculus. In Proceedings of the 2009 Winter Simulation Conference (WSC’09). · doi:10.1109/WSC.2009.5429723
[42] S. Nähring, R. Ewald, A. M. Uhrmacher, and C. Maus. 2013. From standardized modeling formats to modeling languages and back—an exploration based on SBML and ML-Rules. In Proceedings of the 2013 Winter Simulation Conference (WSC’13). 1359–1370. DOI:http://dx.doi.org/10.1109/WSC.2013.6721522 · doi:10.1109/WSC.2013.6721522
[43] Nicolas Oury and Gordon D. Plotkin. 2013. Multi-level modelling via stochastic multi-level multiset rewriting. Mathematical Structures in Computer Science 23, 2, 471–503. · Zbl 1318.92015 · doi:10.1017/S0960129512000199
[44] Ernest H. Page. 1994. Simulation Modeling Methodology: Principles and Etiology of Decision Support. Ph.D. Dissertation. Virginia Polytechnic Institute and State University.
[45] Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Pragmatic Bookshelf, Raleigh, NC.
[46] O. Parvu, D. Gilbert, M. Heiner, F. Liu, N. Saunders, and S. Shaw. 2015. Spatial-temporal modelling and analysis of bacterial colonies with phase variable genes. ACM Transactions on Modeling and Computer Simulation 25, 2, Article No. 13. · Zbl 06860021 · doi:10.1145/2742546
[47] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press, Cambridge, MA. · Zbl 0995.68018
[48] Corrado Priami. 1995. Stochastic π-calculus. Computer Journal 38, 7, 578–589. · Zbl 05478217 · doi:10.1093/comjnl/38.7.578
[49] Corrado Priami and Paola Quaglia. 2005. Beta binders for biological interactions. In Proceedings of the 2005 International Conference on Computational Methods in Systems Biology (CMSB’05). 20–33. · Zbl 1088.68646 · doi:10.1007/978-3-540-25974-9_3
[50] Corrado Priami, Paola Quaglia, and Alessandro Romanel. 2009. BlenX static and dynamic semantics. In Proceedings of the 20th International Conference on Concurrency Theory (CONCUR’09). 37–52. · Zbl 1254.68060 · doi:10.1007/978-3-642-04081-8_4
[51] Aviv Regev, Ekaterina M. Panina, William Silverman, Luca Cardelli, and Ehud Shapiro. 2004. BioAmbients: An abstraction for biological compartments. Theoretical Computer Science 325, 1, 141–167. · Zbl 1069.68569 · doi:10.1016/j.tcs.2004.03.061
[52] Alexander Steiniger and Adelinde M. Uhrmacher. 2016. Intensional couplings in variable structure models: An exploration based on multi-level-DEVS. ACM Transactions on Modeling and Computer Simulation 26, 2, 9:1–9:27. DOI:http://dx.doi.org/10.1145/2818641 · Zbl 1368.68324 · doi:10.1145/2818641
[53] Vo Hong Thanh, Corrado Priami, and Roberto Zunino. 2014. Efficient rejection-based simulation of biochemical reactions with stochastic noise and delays. Journal of Chemical Physics 141, 13, 134116. DOI:http://dx.doi.org/10.1063/1.4896985 · doi:10.1063/1.4896985
[54] John J. Tyson. 1991. Modeling the cell division cycle: cdc2 and cyclin interactions. Proceedings of the National Academy of Sciences 88, 16, 7328–7332. · doi:10.1073/pnas.88.16.7328
[55] Adelinde M. Uhrmacher. 2001. Dynamic structures in modeling and simulation: A reflective approach. ACM Transactions on Modeling and Computer Simulation 11, 2, 206–232. DOI:http://dx.doi.org/10.1145/384169.384173 · Zbl 05458280 · doi:10.1145/384169.384173
[56] Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-specific languages: An annotated bibliography. ACM SIGPLAN Notices 35, 6, 26–36. · doi:10.1145/352029.352035
[57] Tom Warnke, Tobias Helms, and Adelinde M. Uhrmacher. 2015. Syntax and semantics of a multi-level modeling language. In Proceedings of the 3rd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation (PADS’15). 133–144. DOI:http://dx.doi.org/10.1145/2769458.2769467 · Zbl 1369.93068 · doi:10.1145/2769458.2769467
[58] Richard J. Youle and Alexander M. van der Bliek. 2012. Mitochondrial fission, fusion, and stress. Science 337, 6098, 1062–1065. DOI:http://dx.doi.org/10.1126/science.1219855 · doi:10.1126/science.1219855
[59] Bernard P. Zeigler. 1984. Theory of discrete event specified models: Modularity, hierarchy, experimental frames. International Journal of General Systems 10, 1 (1984), 57–84. DOI:http://dx.doi.org/10.1080/03081078408934871 · doi:10.1080/03081078408934871
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.