zbMATH — the first resource for mathematics

On the conductors of mod \(\ell\) Galois representations coming from modular forms. (English) Zbl 0674.10024
Let \(\rho\) : Gal(\({\bar {\mathbb{Q}}}/{\mathbb{Q}})\to GL_ 2({\mathbb{F}})\) be a continuous odd, absolutely irreducible representation (with \({\mathbb{F}}^ a \)finite field of characteristic \(\ell)\) which arises as the reduction mod \(\ell\) of the \(\ell\)-adic representation attached to a newform g. Let N(\(\rho)\) be the conductor of \(\rho\), and N(g) the level of g. The author proves that there is a Dirichlet character \(\chi_ 0\) of \(\ell\)-power order, and of conductor dividing the product of primes \(p\neq \ell\) that divided N(g), such that if \(\chi\) is any other such Dirichlet character then \(N(g\otimes \chi_ 0)\) divides N(g\(\otimes \chi)\) and if \(p^ s | | N(g\otimes \chi_ 0)\) for a prime \(p\neq \ell\) then \(p^ s | | N(\rho)\) unless \(s=1\) or 2. In these cases the author determines the nature of the local component \(\pi_ p\) of the automorphic representation \(\pi\) of \(GL_ 2({\mathbb{A}})\) associated to g.
As the author points out, his result says that the problem of reducing the level at a prime \(p\neq \ell\) in the Serre conjecture [see J.-P. Serre, Duke Math. J. 54, 179-230 (1987; Zbl 0641.10026)] reduces to a purely local problem except in the special cases cited above.
Reviewer: S.Kamienny

11F80 Galois representations
11F11 Holomorphic modular forms of integral weight
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
Full Text: DOI
[1] ()
[2] Carayol, H., Sur LES représentations l-adiquels associées aux formes modulaires de Hilbert, Ann. sci. E.N.S., 19, 409-468, (1986) · Zbl 0616.10025
[3] Casselman, W., On some results of Atkin and lehner, Math. ann., 201, 301-314, (1973) · Zbl 0239.10015
[4] Deligne, P., Formes modulaires et représentations l-adiques, (), 139-172, exp. 355
[5] Deligne, P., Formes modulaires et représentations de GL(2), (), 55-105 · Zbl 0271.10032
[6] Deligne, P., LES constantes deséquations fonctionnelles des fonctions L, (), 501-597
[7] Jacquet, H.; Langlands, R.P., (), SLN 114
[8] Jacquet, H.; Piatetski-Shapiro, I.I.; Shalaika, J., Conducteur des représentations du groupe linéaire, Math. ann., 256, 199-214, (1981) · Zbl 0443.22013
[9] Jordan, B.W.; Livné, R.A., On the Néron model of Jacobians of Shimura curves, Compositio math., 60, 227-236, (1986) · Zbl 0609.14018
[10] {\scB. W. Jordan and R. A. Livné}, Integral Hecke structures arising from definite quaternion algebras, in preparation.
[11] Ribet, K., On modular representations of gal(ℚ/ℚ) arising from modular forms, (June 1987), MSRI preprint
[12] Serre, J.-P., ()
[13] {\scJ.-P. Serre}, Facteurs locaux des fonctions zeˆta des variétés algébriques (définitions et conjectures), in “Sém. DPP 1969/1970”, exp. 19 ( = Oe. 87).
[14] Serre, J.-P., Sur LES représentations modulaires de degré2 de gal(ℚ/ℚ), Duke math. J., 54, No. 1, 179-230, (1987)
[15] Serre, J.-P.; Tate, J., Good reduction of abelian varieties, Ann. of math., 88, 492-517, (1968) · Zbl 0172.46101
[16] Tate, J., Number theoretic background, (), 3-26, Part 2 · Zbl 0422.12007
[17] Tunnell, J., Report on the local Langlands’ conjecture for GL(2), (), 135-138, Part 2 · Zbl 0409.12026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.