×

Galois module structure of the rings of integers in wildly ramified extensions. (English) Zbl 0674.12005

The main results of this paper may be loosely stated as follows.
Theorem. Let N and \(N'\) be sums of Galois algebras with group \(\Gamma\) over algebraic number fields. Suppose that N and \(N'\) have the same dimension over \({\mathbb{Q}}\) and that they are identical at their wildly ramified primes. Then (writing \({\mathfrak O}_ N\) for the maximal order in N) \[ {\mathfrak O}_ N\oplus {\mathfrak O}_ N\oplus {\mathbb{Z}}\Gamma \cong_{{\mathbb{Z}}\Gamma} {\mathfrak O}_{N'}\oplus {\mathfrak O}_{N'}\oplus {\mathbb{Z}}\Gamma. \] In many cases \({\mathfrak O}_ N \cong_{{\mathbb{Z}}\Gamma} {\mathfrak O}_{N'}.\)
The rôle played by the root numbers of N and \(N'\) at the symplectic characters of \(\Gamma\) in determining the relationship between the \({\mathbb{Z}}\Gamma\)-modules \({\mathfrak O}_ N\) and \({\mathfrak O}_{N'}\) is described. The theorem includes as a special case the theorem of M. J. Taylor on the structure of the ring of integers in a tamely ramified extension and it employs many of the results employed by Taylor in the proof of his theorem.
Reviewer: S.M.J.Wilson

MSC:

11R33 Integral representations related to algebraic numbers; Galois module structure of rings of integers
20C10 Integral representations of finite groups
11R65 Class groups and Picard groups of orders
11R42 Zeta functions and \(L\)-functions of number fields
19A31 \(K_0\) of group rings and orders
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] E. BAYER-FLUCKIGER, C. KEARTON and S. M. J. WILSON, Decomposition of modules, forms and simple knots, J. Crelle, 375/376 (1987), 167-183. · Zbl 0607.57013
[2] C. W. CURTIS and I. REINER, Methods of representation theory with applications to finite groups and orders, Wiley, New York, 1983. · Zbl 0616.20001
[3] A. FRÖHLICH, Locally free modules over arithmetic orders, J. Crelle, 274/75 (1975), 112-138. · Zbl 0316.12013
[4] A. FRÖHLICH, Galois module structure of algebraic integers, Springer-Verlag, Berlin, 1983. · Zbl 0501.12012
[5] A. HELLER, Some exact sequences in algebraic K-theory, Topology, 3 (1965), 389-408. · Zbl 0161.01507
[6] J. MARTINET, Character theory and Artin L-functions in “algebraic number fields” (ed. A. Fröhlich), Acad. Press, London, 1977. · Zbl 0359.12015
[7] J. QUEYRUT, Modules radicaux sur des ordres arithmétiques, J. of Algebra, 84 (1983), 420-440.
[8] J. QUEYRUT, Anneaux d’entiers dans le même genre, Illinois J. of Math., 29 (1985), 157-179. · Zbl 0552.12005
[9] M. J. TAYLOR, On Fröhlich’s conjecture for rings of integers of tame extensions, Invent. Math., 63 (1981), 321-353. · Zbl 0469.12003
[10] S. M. J. WILSON, Extensions with identical wild ramification, Séminaire de Théorie des Nombres, Université de Bordeaux I, 1980-1981. · Zbl 0491.12008
[11] S. M. J. WILSON, Structure galoisienne et ramification sauvage, Séminaire de Théorie des Nombres, Université de Bordeaux I, 1986-1987. · Zbl 0682.12004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.