Remarks on classical invariant theory.(English)Zbl 0674.15021

As it is well known, the theorem on tensor invariants for $$GL_ n$$ is directly available by using the double commutant theorem. Recently it was shown by M. Atijah, R. Bott and V. Patodi [Inv. Math. 19, 279-330 (1973; Zbl 0257.58008)] how the result on tensor invariants for orthogonal groups $$0_ n$$ could be reduced by a fairly quick argument to the result for $$GL_ n$$, and a similar argument goes through for the symplectic groups $$SP_{2n}$$. The main purpose of the present discussion is to point out that this unified viewpoint is in fact capable of considerable extension. The starting point is the following theorem which is the extension of the first fundamental theorem of classical invariant theory to some new context:
Theorem. Let G be a classical group, and let U and W be G-modules formed by taking direct sums of the basic module for G (and, if $$G=GL_ n$$, of the contragradient module). Consider the resulting action on the associative algebra (with 1) S(U)$$\otimes \Lambda (W)$$. Then the algebra of G-invariants is generated by the invariants of degree 2 (with respect to natural grading).
Here are the specifics of the extended viewpoint of the author:
(a) The argument used to pass from tensor invariants to polynomial invariants in many variables applies equally well to the decomposition of mixed algebras of partially symmetric, partially antisymmetric tensors.
(b) By means of a process of “doubling the variables”, the result in (a) yields a description of the endormorphisms (of a certain reasonable type) commuting with a classical action on such an algebra.
(c) The result of (b) may be viewed as a “duality theorem” for commuting subalgebras of a certain naturally occuring graded Lie algebra.
(d) Particular cases of the above general scheme yield many classical computations in multilinear algebra, often with additional structure and insight. As the examples it is given the following:
(i) the full isotypic decomposition of the polynomials in k variables for a classical action (“theory of spherical harmonics”),
(ii) the exactness of the polynomial de Rham and Dolbeault complexes, and the homotopy between the identity and projection onto constants,
(iii) the algebra behind the structure of the cohomology of Kähler manifolds (sometimes called Hodge theory) as a special case of the analogue of (i) for exterior algebras,
(iv) the cohomology of the unitary group,
(v) the invariants of the adjoint action of the classical groups,
(vi) elucidation of the Capelli identity.
Reviewer: V.L.Popov

MSC:

 15A72 Vector and tensor algebra, theory of invariants 20G05 Representation theory for linear algebraic groups 22E45 Representations of Lie and linear algebraic groups over real fields: analytic methods 22E70 Applications of Lie groups to the sciences; explicit representations 20C35 Applications of group representations to physics and other areas of science 20G45 Applications of linear algebraic groups to the sciences 81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, $$W$$-algebras and other current algebras and their representations

Zbl 0257.58008
Full Text:

References:

 [1] M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279 – 330. · Zbl 0257.58008 · doi:10.1007/BF01425417 [2] Shiing-shen Chern, On a generalization of Kähler geometry, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 103 – 121. · Zbl 0078.14103 [3] Stephen Gelbart, Holomorphic discrete series for the real symplectic group, Invent. Math. 19 (1973), 49 – 58. · Zbl 0236.22013 · doi:10.1007/BF01418850 [4] Kenneth I. Gross and Ray A. Kunze, Bessel functions and representation theory. II. Holomorphic discrete series and metaplectic representations, J. Functional Analysis 25 (1977), no. 1, 1 – 49. · Zbl 0361.22007 [5] SigurÄ’ur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1 – 154 (1970). · Zbl 0209.25403 · doi:10.1016/0001-8708(70)90037-X [6] Roger Howe, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, Applications of group theory in physics and mathematical physics (Chicago, 1982) Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1985, pp. 179 – 207. · Zbl 0558.22018 [7] Nathan Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980. · Zbl 0441.16001 [8] V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323 – 1367 (Russian). [9] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1 – 47. · Zbl 0375.22009 · doi:10.1007/BF01389900 [10] Bertram Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975) Springer, Berlin, 1977, pp. 177 – 306. Lecture Notes in Math., Vol. 570. · Zbl 0358.53024 [11] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329 – 387. · Zbl 0134.03501 · doi:10.2307/1970237 [12] Bertram Kostant, A theorem of Frobenius, a theorem of Amitsur-Levitski and cohomology theory, J. Math. Mech. 7 (1958), 237 – 264. · Zbl 0087.25702 [13] Dudley E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, New York, 1940. · Zbl 0025.00901 [14] Masahiko Saito, Représentations unitaires des groupes symplectiques, J. Math. Soc. Japan 24 (1972), 232 – 251 (French). · Zbl 0232.22025 · doi:10.2969/jmsj/02420232 [15] Jean-Pierre Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, inc., New York-Amsterdam, 1966 (French). · Zbl 0144.02105 [16] C. Seshadri, Letter to M. F. Atiyah. [17] David Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149 – 167. · Zbl 0171.46901 [18] R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371 – 388. · Zbl 0061.04201 · doi:10.2307/2371691 [19] Hans Tilgner, Graded generalizations of Weyl- and Clifford algebras, J. Pure Appl. Algebra 10 (1977/78), no. 2, 163 – 168. · Zbl 0386.17003 · doi:10.1016/0022-4049(77)90019-6 [20] André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). · Zbl 0137.41103 [21] -, Sur certains groupes d’opérateurs unitaires, Acta Math. 11 (1964), 143-211. · Zbl 0203.03305 [22] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. · Zbl 1024.20501 [23] Компактные группы Ли и их представления., Издат. ”Наука”, Мосцощ, 1970 (Руссиан). Д. П. Žелобенко, Цомпацт Лие гроупс анд тхеир репресентатионс, Америцан Матхематицал Социеты, Провиденце, Р.И., 1973. Транслатед фром тхе Руссиан бы Исраел Програм фор Сциентифиц Транслатионс; Транслатионс оф Матхематицал Монограпхс, Вол. 40.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.