## Statistical convergence in a locally convex space.(English)Zbl 0674.40008

Let X be a locally convex Hausdorff topological linear space, whose topology is given by a family Q of continuous seminorms q. A sequence $$(x_ k)\in X$$ converges statistically to $$\ell \in X$$ if $$n^{-1}| \{k\leq n:\quad q(x_ k-\ell)\geq \epsilon \}| \to 0$$ as $$n\to \infty$$, $$\forall q\in Q$$, $$\forall \epsilon >0$$, where $$| A|$$ denotes the cardinality of the set A. Let S be the space of sequences statistically convergent in X. Given a modulus f (for the definition see also the author [Math. Proc. Camb. Philos. Soc. 100, 161-166 (1986; Zbl 0631.46010)]), w(f) denotes the set of $$(x_ k)$$ for which $$\exists \ell \in X$$ such that $$(1/n)\sum^{n}_{k=1}f(q(x_ k-\ell))\to 0$$ as $$n\to \infty$$, $$\forall q\in Q$$. At last one says that $$(x_ k)$$ is slowly oscillating if $$(x_ k-x_ n)\to 0$$ as $$k\to \infty$$, $$n\geq k$$ and n/k$$\to 1$$. For every modulus f, the following results hold:
1) $$[x_ k\to \ell (w(f))]\;\Rightarrow\;[x_ k\to \ell (s)];$$
2) $$[S\equiv w(f)]\;\Leftrightarrow\;[f$$ is bounded]
3) $$[x_ k\to \ell (w(f))] \bigwedge [(x_ k)$$ is slowly oscillating]$$\;\Rightarrow\;[x_ k\to \ell].$$
If X is a Banach space, and $$w_ 1$$ is the space $$w(f)$$ with $$f(t)=1$$, then
4) $$[w(f)$$ is locally convex]$$\;\Leftrightarrow\;[w(f)=w_ 1]\;\Leftrightarrow\;[\lim_{t\to \infty}f(t)/t>0].$$
Reviewer: F.Barbieri

### MSC:

 40J05 Summability in abstract structures 46A45 Sequence spaces (including Köthe sequence spaces)

Zbl 0631.46010
Full Text:

### References:

 [1] DOI: 10.1007/BF01175646 · Zbl 0045.33403 · doi:10.1007/BF01175646 [2] DOI: 10.2307/2308747 · Zbl 0089.04002 · doi:10.2307/2308747 [3] Sal?t, Math. Slovaca 2 pp 139– (1980) [4] Fast, Colloq. Math 2 pp 241– (1951) [5] Maddox, Math. Proc. Cambridge Philos. Soc 100 pp 161– (1986) [6] Fridy, Analysis 5 pp 301– (1985) · Zbl 0588.40001 · doi:10.1524/anly.1985.5.4.301 [7] Maddox, Math. Proc. Cambridge Philos. Soc 101 pp 523– (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.